Basaveshwar Engineering College, Bagalkote Department of Artificial Intelligence and Machine Learning Engineering Scheme of Teaching and Evaluation (Academic Year 2020 – 2021 admitted)

Sl. No	SUBJECT CODE	SUBJECT	CREDI TS	HOU	RS/ W	TEEK	E	XAMINA MARI	
				L	Т	Р	CIE	SEE	TOTAL
1.	UMA391C	Numerical Techniques and Integral Transforms	3	3			50	50	100
2.	UAI302C	Data Structures and Applications	4	4			50	50	100
3.	UAI303C	Embedded Systems	4	4			50	50	100
4.	UAI304C	Computer Organization	4	4			50	50	100
5.	UAI305C	AI and its Applications	3	3			50	50	100
6.	UAI306L	Problem Solving with Python Lab.	2		2	4	50	50	100
7.	UAI307L	Data Structures Lab.	1	-		2	50	50	100
8.	UAI308L	Embedded Systems Lab.	1	-		2	50	50	100
9.	UBT133M	Environmental Studies *	0	2		0	50	50	100
10.	UMA330M	Bridge course Mathematics – I *	0	3		0	50	50	100
		Total	22	23	2	8	500	500	1000

III Semester BE

*Mandatory Subjects (For lateral entry (Diploma quota) students only)

Basaveshwar Engineering College, Bagalkote Department of Artificial Intelligence and Machine Learning Engineering Scheme of Teaching and Evaluation (Academic Year 2020 – 2021 admitted)

IV Semester BE

Sl. No	SUBJECT CODE	SUBJECT	CREDI TS	HOU	JRS/ WI	EEK	EX	AMINA MARK	
				L	Т	Р	CIE	SEE	TOTAL
1.	UMA491C	Statistics and Probability Distributions	3	3			50	50	100
2.	UAI402C	Design and Analysis of Algorithms	4	3	2		50	50	100
3.	UAI403C	Operating Systems	4	4			50	50	100
4.	UAI404C	Introduction to Data Science	3	3			50	50	100
5.	UAI405C	OOPS with Java Programming	3	3			50	50	100
6.	UHS001N	Fundamentals of Quantitative Aptitude And Soft Skills	1	1			50	50	100
7.	UAI406L	Design and Analysis of Algorithms Lab	1			2	50	50	100
8.	UAI407L	Data Science Lab	1			2	50	50	100
9.	UHS004M	Universal Human Values - II		3					
10.	UMA430 M	Bridge Course Maths - II*		3			50	50	100
11.	UHS226M	Constitution of India*		2			50	50	100
12.	UHS488C UHS489C	Samskruthika Kannada** Balake Kannada***	1	2			50	50	100
		Total	21	27	2	4	550	550	1100

*For lateral entry (Diploma) students only

**Students who have studied Kannada at primary level

*** Students who have not studied Kannada at primary level

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Basaveshwar Engineering College, Bagalkote Department of Artificial Intelligence and Machine Learning Engineering Scheme of Teaching and Evaluation (Academic Year 2020 – 2021 admitted)

V Semester BE

Sl. No	SUBJEC T CODE	SUBJECT	CREDI TS	HOU	IRS/ WI	EEK	EX	AMINA MARK	
				L	Т	Р	CIE	SEE	TOTAL
1.	UAI501C	Principles of AI	3	3			50	50	50
2.	UAI502C	Machine Learning Algorithms	3	3			50	50	50
3.	UAI503C	Database Management Systems	3	3			50	50	50
4.	UAI504E	Computer Graphics with OpenGL	3	3			50	50	50
5.	UAI505X	Open Elective-I	3	3			50	50	50
6.	UHS002 N	Fundamentals of Quantitative Aptitude And Soft Skills	1	2	1		50	50	50
7.	UAI506L	AI and Machine Learning Lab	1			3	50	50	50
8.	UAI507L	Database Lab	1			3	50	50	50
9.	UAI508L	Robotics Lab	2		2	2	50	50	50
		Total	21	17	2	8	450	450	900

Basaveshwar Engineering College, Bagalkote Department of Artificial Intelligence and Machine Learning Engineering Scheme of Teaching and Evaluation (Academic Year 2020 – 2021 admitted)

VI Semester BE

Sl.	SUBJECT	SUBJECT	CREDI	HOU	RS/W	EEK	EXAM	INATIO	N MARKS
No	CODE		TS	L	Т	Р	CIE	SEE	TOTAL
1.	UAI601C	Advanced AI and ML	3	3			50	50	100
2.	UAI602C	Cloud Computing	3	3			50	50	100
3.	UAI603C	Computer Networks	3	3			50	50	100
4.	UAI604E	Natural Language Processing	3	3			50	50	100
5.	UAI605E	Cyber Security	3	3			50	50	100
6.	UAI606X	Open Elective – B	3	3			50	50	100
7.	UAI607L	Advanced AI and ML Lab	1			3	50	50	100
8.	UAI608L	Web Programming Lab	2		2	2	50	50	100
9.	UHS003N	Career Planning & Professional skills	1	2			50	50	100
10.	UAI610P	Mini Project	2			3	50	50	100
		Total	24	20	2	8	500	500	1000

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

UMA391C	Numerical Techniques and Integral	Credits:03
Hrs/Week : 03	Transforms	CIE Marks:50
Total Hours:40		SEE Marks:50

UNIT - I	10 Hrs
Numerical analysis - I: Introduction to root finding problems, Bisection Method Raphson method. Finite differences, forward and backward difference oper	rators (no
derivations on relations between operators) Newton-Gregory forward and interpolation formulae. (Without proof), Lagrange's and Newton's divided differenc interpolation formulae (without proof).	
UNIT – II	10 Hrs
Numerical analysis - II: Numerical differentiation using Newton's forward and formulae problems. Trapezoidal rule, Simpson's one third rule, Simpson's three eigh Weddle's rule (no derivation of any formulae) problems. Euler's and Modified Eule Runge-Kutta 4 th order method.	nth rule and
UNIT - III	10 Hrs
Fourier series: Periodic functions, Conditions for Fourier series expansions, Fo expansion of continuous and functions having finite number of discontinuities, ev functions. Half-range series, practical harmonic analysis.	
UNIT - IV	10 Hrs
Fourier transforms and z-transforms : Infinite Fourier transforms and inve transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse	
and cosine transforms. Z-transforms-definition, standard forms, linearity propert rule, shifting rule-problems.	

4) E Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons.

June

UAI302C	Data Structures and Applications	Credits: 04
Hrs/Week : 04		CIE Marks:50
Total Hrs: 52		SEE Marks:50

UNIT - I 13 Hrs
 Introduction to Data Structures: Basic Concepts: Abstract data type: Atomic and composite data, Data type, Data structure, Abstract data type, Model for an abstract data type: ADT operations, ADT data structures, Pointer to void. Pointer to Function: Defining pointers to functions, Using pointers to functions. Stacks: Basic stack operations: Push, Pop, Stack top. Stack linked list: Implementation, Data structure, Stack head, Stack data node, Stack algorithms, Create Stack, Push Stack, Stack top, Empty Stack, Full Stack, Stack count, Destroy Stack, C language implementation: Insert data, Push Stack, Print Stack, Pop character. Stack ADT: Data structure, ADT
implementations, Stack structure, Create stack, Push stack, Pop stack, Stack top, Empty stack, Stack count, Destroy stack. Stack applications : Reversing data, Reverse a list, Convert decimal to binary, Infix to postfix transformation, Evaluating postfix expressions, Stack implementation using array.
UNIT – II 13 Hrs
Queues: Queue Operations: Enqueue, Dequeue, Queue front, Queue rear, Queue example. Queue Linked list design : Data structure, Queue head, Queue data node, Queue algorithms, Create queue, Enqueue, Dequeue, Retrieving queue data, Empty queue, Full queue, Queue count, Destroy queue. Queue ADT : Queue structure, Queue ADT algorithms, Queue Implementation using array, Queue Applications. Sorting: Selection, Insertion, exchange and quick sorts. Searching : Sequential, binary search, hashed list searches.
UNIT - III 13 Hrs
General Linear lists: Basic operations , Insertion, Deletion, Retrieval, Traversal. Implementation: Data structure, Head node, Data node, Algorithms, Create list, Insert node, Delete node, List search, Retrieve node, Empty list, Full list, List count, Traverse list, Destroy list. List ADT : ADT functions, Create list, Add node, Internal insertion function, Remove node, Internal delete function, Search list, Internal search function, Retrieve node, Empty list, Full list, List count, Traverse, Destroy list. Circular linked lists and Doubly linked lists : Create list, add node, delete node, retrieve node, search list.
UNIT - IV 13 Hrs
Non-Linear lists: Trees: Basic tree concepts: Terminology, User representation, Binary trees: Properties, Height of binary trees, Balance, Complete and Nearly complete binary trees, Binary tree traversals: Depth-first traversals, Breadth-first traversals, Expression Trees: Infix traversal, Postfix traversal, Prefix traversal, Huffman code, General trees, Binary search trees: Basic concepts, BST operations: Traversals, Searches, Insertion Find the smallest and largest node, BST search, Insertion, Deletion, Binary search tree ADT, Data structure, Head and node structure, Algorithms, Create a BST, Insert a BST, Internal insert function, Delete a BST, Internal delete function, Retrieve a BST, Internal retrieve function, Traverse a BST, Internal traverse function, Empty a BST, Full BST, BST count, Destroy a BST,

Graphs: Basic concepts, **Operations**: Insert vertex, Delete vertex, Add edge, Delete edge, Find vertex, **Graph storage structures**: Adjacency matrix, Adjacency list.

Internal destroy function.

Text Book:

1) Behrouz A. Forouzan and Richard F. Gilberg, 2nd Edition, Cengage Learning Publisher, 2005. **Data Structure A Pseudocode Approach with C**, (Chapter 1(1.2,1.3,1.5), 2,3,4 (4.1-4.4), 5, 6(6.1-6.3), 7(7.1-7.3), 11(11.1-11.3),12(12.2-12.4) 13(13.1-13.3) Appendix F.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Reference Books:

- 1) Data Structures Using C, Aaron M. Tenanbaum, Yedidyah Langsam, Moshe J Augenstein Pearson Education.
- 2) Data Structures and Program Design in C, Robert Kruse, Bruce Leung, C. L. Tondo, Shashi Mogalla, 2nd Edition, Pearson Education.
- 3) Data Structures with C, Seymour Lipschutz, Schaum's outlines, MGH Education.
- 4) Data Structures Through C, Yeshwant Kanetkar, BPB publications.

Course outcomes:

- 1. Summarize linear and nonlinear data structures concepts, searching and sorting techniques.
- 2. Analyze and implement different data structures, searching and sorting techniques.
- 3. Compare and contrast different types of data structures and searching and sorting methods.
- 4. Develop solutions for the given problem by using relevant data structure

UAI303C	Embedded Systems	Credits: 04
Hrs/Week: 04		CIE Marks:50
Total Hrs: 52		SEE Marks:50

UNIT - I 13 Hrs
 Boolean Algebra: Definition of Boolean algebra, Boolean algebra theorems, A two-valued Boolean algebra, Boolean formulas and functions, Canonical Formulas, Manipulations of Boolean formulas. Gates and Combinational networks: Incomplete Boolean functions and Don't care conditions, Additional Boolean operations and Gates. Simplification of Boolean Expressions: K-maps and The Quine-McCluskey method. Logic Design with MSI Components, Flip- Flops, Counters: Binary adders and subtractors, Decimal adders, Comparators, Decoders, Multiplexers. The basic Bi-stable element, Latches, Master-Slave flip-flops (Pulse-Triggered flip-flops), Edge triggered flip-flops flops, Characteristic equations, Registers, Counters, Design of synchronous counters.
UNIT – II 13 Hrs
The 8051 Microcontrollers, Assembly Language Programming: Microcontrollers and Embedded systems, Overview of the 8051 family, Inside the 8051, Introduction to 8051 Assembly programming, Assembling and running an 8051 program, the program counter and ROM space in the 8051, 8051 data types and directives, 8051 flag bits and PSW register, 8051 register banks and stack, pin description of the 8051. Jump, Loop and Call Instructions, I/O Port Programming: Loop and Jump instructions, Call instructions, Time delay for various 8051 chips, 8051 I/O programming, I/O bit manipulation programming.
UNIT - III 13 Hrs
8051 Addressing Modes, Arithmetic, Logic Instructions and Programs: Immediate and register addressing modes, Accessing memory using various addressing modes, Bit addresses for I/O and RAM, Extra 128-byte-on-chip RAM in 8052. Arithmetic instructions, Signed number concepts and arithmetic operations, Logic and compare instructions, Rotate instruction and data serialization, BCD, ASCII, and other application programs.Immediate and Immediate and Immediate and Immediate and Immediate and Immediate addressing modes, Bit addresses for I/O and RAM, Extra 128-byte-on-chip RAM in 8052. Arithmetic instructions, Signed number concepts and arithmetic operations, Logic and compare instructions, Rotate instruction and data serialization, BCD, ASCII, and other application programs.Immediate and Immediate addressing modes, Bit Immediate addressing modes, Bit instruction addressing modes, Bit Immediate addressing mode, Bit Immediate
 8051 Programming in C, Pin description of 8051: Data types and time delay in 8051 C, I/O programming in 8051 C, Logic operations in 8051 C, Data conversion programs in 8051 C, Accessing code ROM space in 8051 C, Data serialization using 8051 C. 8051 Timer Programming in Assembly and C: Programming 8051 timers, counter programming, Programming timer 0 and 1 in 8051 C. Interrupts Programming in Assembly and C: 8051 interrupts, Programming timer interrupts, Programming external hardware interrupts, Programming the serial communication interrupt, Interrupt priority in the 8051/52, Interrupt programming in C. MOTOR Control: DC and Stepper Motors.
Text Books:
 Donald D. Givone, Digital Principles and Design, McGraw Hill Edition 2002. Muhammed Ali Mazidi, Janice Gillispie Mazidi and Rolin D. Mckinlay, The 8051 Microcontroller and Embedded Systems Using Assembly and C, Pearson 2nd Edition, 2011.

Principal, Basaveshwar Engineering Collegë. BAGALKOT-587 102.

Reference Books:

- 1) Leach and Malvino, Digital Principles and Applications, TMH, New Delhi, 2002.
- 2) Yarbrough J. M, Digital logic- Applications and Design, Thomson Learning, New Delhi, 2001.
- 3) Kenneth J. Ayala, The 8051 Microcontroller Architecture, Programming and Applications, 2nd Edition, Penram International, 1996.
- 4) Uma Rao and Andhe Pallavi, The 8051 Microcontroller Architecture, Programming and Applications, Pearson Education Sanguine.
- 5) V. Udayshankar, M. S. Mallikarjunaswamy, 8051 Microcontroller: Hardware, Software and Applications, McGrawHill, New Delhi.

Course outcomes:

- 1. Comprehend the difference between microprocessor and microcontroller architectures.
- 2. Simulate, analyze and develop basic programs using assembly and C language.
- 3. Demonstrate the use of Timers, Counters, Interrupts through programs.
- 4. Demonstrate the use of serial ports through programs for developing basic communication systems.
- 5. Analyze a problem and formulate appropriate computing solution for microcontroller based embedded applications.

UAI304C	Computer Organization	Credits: 04
Hrs/Week:04		CIE Marks: 50
Total Hrs:52		SEE Marks:50
		0121110100

UNIT - I	10 Hr
Basic structure of computers: Computer types, Functional Units, Basic operati Bus structures. Machine instructions and programs: Numbers, Arithmetic of characters, Memory locations and addresses, Memory operations, Ins instruction sequencing, Addressing modes, Assembly language, assembler of number notation, Stacks and Queues, Subroutines, Encoding of machine instru-	operations and structions and directives, uctions.
UNIT – II	10 Hr
Input/output organization: Accessing I/O devices, Interrupts-Interrupt hardwand Disabling Interrupts, Handling multiple devices, controlling de Exceptions, Direct memory access-bus Arbitrations, Buses-Asynchrono Synchronous bus, Interface Circuits-Parallel port and serial port, Standard Peripheral component interconnect Bus, SCSI bus, USB.	evice requests bus bus and I/O Interfaces
UNIT - III	10 Hr
The memory system: Some Basic concepts, Semiconductor RAM memoremories, speed, size, and cost, cache memories. Arithmetic Unit: Addition of signed numbers, Design of fast adders, Multiplication of positive numberand multiplication, Fast multiplication. Integer Division, Floating point	and subtractic umbers, Signe
operations- IEEE standard for Floating point numbers, Arithmetic operations on Floating	
operations-	
operations- IEEE standard for Floating point numbers, Arithmetic operations on Floating Implementing Floating point operations. UNIT - IV Basic Processing Unit: Some fundamental concepts, Execution of compl Hardwired Control, Micro programmed control, Micro instructions. Pl concepts, role of cache memory, pipeline performance. Large computer sys parallel processing, array processor, the structure of general multiprocessors. Performance: Processor Clock, Basic performance equation, pipelining a	point numbers 10 Hr lete instruction ipelining: bas stems : forms of purpose an
operations- IEEE standard for Floating point numbers, Arithmetic operations on Floating Implementing Floating point operations. UNIT - IV Basic Processing Unit: Some fundamental concepts, Execution of compl Hardwired Control, Micro programmed control, Micro instructions. Pi concepts, role of cache memory, pipeline performance. Large computer sys parallel processing, array processor, the structure of general multiprocessors. Performance: Processor Clock, Basic performance equation, pipelining a operations, Clock rate, Instruction set, compiler, performance measurement.	point number 10 Hr lete instructio ipelining: bas stems : forms of purpose ar
operations- IEEE standard for Floating point numbers, Arithmetic operations on Floating Implementing Floating point operations. UNIT - IV Basic Processing Unit: Some fundamental concepts, Execution of compl Hardwired Control, Micro programmed control, Micro instructions. Pl concepts, role of cache memory, pipeline performance. Large computer sys parallel processing, array processor, the structure of general multiprocessors. Performance: Processor Clock, Basic performance equation, pipelining a	point number 10 Hr lete instructio ipelining: bas stems: forms of purpose ar nd superscala rganization, 5 4.2.1-4.2.5, 4. .5.1, 8.1, 8.1.

- 1. Describe the fundamental organization of a digital computer.
- 2. Explain the functional units and components of a computer.
- 3. Explain various addressing modes, instruction formats and program control statements and write assembly-level programs using simple machine instructions.
- 4. Distinguish the organization of various parts of a system memory hierarchy.
- 5. Describe fundamental concepts of pipelining and parallel processing.

UAI305C	AI and its Applications	Credits: 03
Hrs/Week:03		CIE Marks:50
Total Hrs: 40		SEE Marks:50

UNIT-I

Introducing AI: Defining the Term AI, Discerning intelligence, Discovering four ways to define AI, Understanding the history of AI, Starting with symbolic logic at Dartmouth, Continuing with expert systems, Overcoming the AI winters, Considering AI uses, Avoiding AI Hype, Connecting AI to the underlying computer.

Defining the role of data: Finding data ubiquitous in this age, Understanding Moore's implications, Using data everywhere, Putting algorithms into action.

Considering the use of algorithms: Understanding the role of algorithms, Understanding what algorithm means, starting from planning and branching, Playing adversarial games, Using local search and heuristics, Discovering the learning machine, Leveraging expert systems, Introducing machine learning, Touching new heights.

Pioneering specialized hardware: Relying on standard hardware, Understanding the standard hardware, Describing standard hardware deficiencies, Using GPUs, Considering the Von Neumann bottleneck, Defining the GPU, Considering why GPUs work well, Creating a specialized processing environment, Increasing hardware capabilities, Adding specialized sensors, Devising methods to interact with the environment.

UNIT – II

Seeing AI uses in computer applications: Introducing common application types, Using AI in typical applications, Realizing AI's wide range of fields, Considering the Chinese Room argument, Seeing how AI makes applications friendlier, Performing corrections automatically, Considering the kinds of corrections, Seeing the benefits of automatic corrections, Understanding why automated corrections don't work, Making suggestions, Getting suggestions based on past actions, Getting suggestions based on groups, Obtaining the wrong suggestions, Considering AI-based errors.

Using AI to address medical needs: Implementing portable patient monitoring, Wearing helpful monitors, Relying on critical wearable monitors, Using movable monitors, Making humans more capable, Using games for therapy, Considering the use of exoskeletons, Addressing special needs, Considering the software-based solutions, Relying on hardware augmentation, Seeing AI in prosthetics, Completing analysis in new ways, Devising new surgical techniques, Making surgical suggestions, Assisting a surgeon, Replacing the surgeon with monitoring, Performing tasks using automation, Working with medical records, Predicting the future, Making procedures safer, Creating better medications, Combining robots and medical professionals.

Relying on AI to improve human interaction: Developing new ways to communicate, Creating new alphabets, Automating language translation, Incorporating body language, Exchanging ideas, Creating connections, Augmenting communication, Defining trends, Using multimedia, Embellishing human sensory perception, Shifting data spectrum, Augmenting human senses.

UNIT - III

10 Hrs

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

10 Hrs

10 Hrs

Performing data analysis for AI: Defining data analysis, Understanding why analysis is important, Reconsidering the value of data, Defining machine learning, Understanding how machine learning works. Understanding the benefits of machine learning, Being useful; being mundane, Specifying the limits of machine learning, Considering how to learn from data, supervised learning, Unsupervised learning, Reinforcement learning.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

Employing machine learning in AI: Taking many different roads to learning, Discovering five main approaches to AI learning, Delving into the three most promising AI learning, approaches, Awaiting the next breakthrough, Exploring the truth in probabilities, Determining what probabilities can do, Considering prior knowledge, Envisioning the world as a graph, Growing trees that can classify, Predicting outcomes by splitting data, Making decisions based on trees, Pruning overgrown trees.

Developing robots and flying with drones: Defining robot roles, Overcoming the sci-fi view of robots, Knowing why it's hard to be a humanoid, Working with robots, Assembling a basic robot, Considering the components, Sensing the world, Controlling a robot, Acknowledging the state of the art, Flying unmanned to missions, Meeting the quad-copter, Defining uses for drones, Seeing drones in non-military roles, Powering up drones using AI, Understanding regulatory issues.

UNIT - IV

10 Hrs

Understanding the Non starter Application: Using AI where it won't work, Defining the limits of AI, Applying AI incorrectly, Entering a world of unrealistic expectations, Considering the effects of AI winters, Understanding the AI winter, Defining the causes of the AI winter, Rebuilding expectations with new goals, Creating solutions in search of a problem, Defining a gizmo, Avoiding the infomercial, Understanding when humans do it better, Looking for the simple solution.

Seeing AI in space: Observing the universe, Seeing clearly for the first time, Finding new places to go, Considering the evolution of the universe, Creating new scientific principles, Performing space mining, Harvesting water, Obtaining rare earths and other metals, Finding new elements, Enhancing communication, Exploring new places, Starting with the probe, Relying on robotic missions, Adding the human element, Building structures in space, Taking your first space vacation, Performing scientific investigation, Industrializing space, Using space for storage.

Adding new human occupations: Living and working in space, Creating cities in hostile environments, Building cities in the ocean, Creating space-based habitats, Constructing moon-based resources, Making humans more efficient, Fixing problems on a planetary scale, Contemplating how the world works, Locating potential sources of problems, Defining potential solutions, Seeing the effects of the solutions, Trying again.

Text Books:

1) John Paul Mueller and Luca Massaron, Artificial Intelligence for Dummies, John Wiley and Sons, 2018.

Reference Books:

- 1) Utpal Chakraborthy, Artificial Intelligence for all, BPB Publications, Feb. 2020.
- 2) Praphat Kumar, Artificial Intelligence, BPB Publications, Jan. 2019.
- 3) Nils J. Nilsson, The Quest for Artificial Intelligence: A History of Idea and Achievements, Stanford University, Camridge University Press, 2010.
- 4) Bernard Marr, Artificial Intelligence: How 50 Successful Companies used Artificial Intelligence to solve Problems, Wiley Publications, 2019.

Course outcomes:

- 1. Demonstrate fundamental understanding of the history of artificial intelligence (AI) and its foundations.
- 2. Demonstrate proficiency in usage of hardware and software platforms for AI based applications.
- 3. Demonstrate awareness and understanding of various applications of AI techniques.
- 4. Demonstrate an ability to share in discussions of AI, its current scope and limitations, and societal implication

UAI402C	DESIGN AND ANALYSIS OF ALGORITHMS	Credits: 04							
L:T:P:3:2:0		CIE Marks:50							
Total Hours/Week : 40/5		SEE Marks:50							
UNIT - I (10+6 hours)									
Introduction: Notion of Algorithm, Fundamentals of Algorithmic Problem Solving, Important Problem Types, Fundamental Data Structures.									
Fundamentals of the Analysis of Algorithm Efficiency: Analysis Framework, Asymptotic									
Notations and Basic Efficiency Classes, Mathematical Analysis of Non-recursive and Recursive									

Algorithms, Example – Fibonacci Numbers.

Brute Force: Selection Sort and Bubble Sort, Sequential Search and Brute-Force String Matching, Exhaustive Search.

UNIT – II (10+6 hours) Divide and Conquer: Merge sort, Quick sort, Binary Search, Binary Tree Traversals and Related Properties, Multiplication of Large Integers and Strassen's Matrix Multiplication. Decrease and Conquer: Insertion Sort, Depth First Search, Breadth First Search, Topological

Sorting, Algorithms for Generating Combinatorial Objects.

UNIT - III

UNIT - IV

(10+6 hours)

Transform and Conquer: Presorting, Balanced Search Trees, Heaps and Heapsort, Problem Reduction.

Space and Time Tradeoffs: Sorting by Counting, Input Enhancement in String Matching, Hashing, B-Trees.

Dynamic Programming: Computing a Binomial Coefficient, Warshall's and Floyd's Algorithms, Optimal Binary Search Trees. The Knapsack Problem and Memory Functions.

(10+6 hours)

Greedy Technique: Prim's Algorithm, Kruskal's Algorithm, Dijkstra's Algorithm, Huffman Trees. **Limitations of Algorithm Power:** Lower-Bound Arguments, Decision Trees, Problems Coping with the Limitations of Algorithm Power: Backtracking, Branch-and-Bound.

Text Books:

 "Introduction to The Design & Analysis of Algorithms", Anany Levitin, Pearson Education, 3rd Edition, 2017

Reference books:

- 1) "Introduction to Algorithms", Stein, PHI, 2nd Edition,
- 2) "Computer Algorithms", Horowitz E., Sahni S., Rajasekaran S., Galgotia Publications, 2001

Course Outcomes:

- 1. Explain the notion of algorithm, asymptotic notations.
- 2. Design and analyze recursive and non-recursive algorithms.
- 3. Design and analyze algorithms using divide and conquer.
- 4. Design and analyze algorithms using dynamic programming and greedy approaches.
- 5. Design and analyze algorithms using backtracking, branch and bound.

L:T:P:4:0:0	CIE Marks:50								
Total Hours/Week :52/4	SEE Marks:50								
	UNIT - I	13 Hrs							
Role of Operating systems Multiprogramming; Time S Operating System operation System calls; Types of system implementation; Operating	systems, types and services: : user view, system view: Types of OS, Sharing; Distributed & Real time OS, Op ons; Operating System Services; User - (em calls; System programs; Operating S g System structure; Virtual machines. cess concept; Concepts of process: Pro I, Operations on processes	perating System structure; Operating System interface; System design and							
	UNIT – II	13 Hrs							
Process Scheduling: Basic Processor scheduling, Inter Threads: concepts, Mul Thread Libraries; Threading Synchronization: The Crit	eads and process synchronization concepts; scheduling criteria; Schedulin rprocess communication. ti-Threaded Programming: Overview; g issues. Thread scheduling. ical section problem; Peterson's solu assical problems of synchronization; M	Multithreading models; ution; Synchronization							
	UNIT - III	13 Hrs							
deadlocks; Deadlock preve deadlock. Memory Management St Paging; Structure of page	anagement tem model; Deadlock characterization; intion; Deadlock avoidance; Deadlock c rategies: Background; Swapping; Cont table; Segmentation. Virtual Memory I acement; Allocation of frames.	detection and recovery from iguous memory allocation;							
	UNIT - IV	13 Hrs							
File system: File System: Fi mounting; File sharing; Pro implementation; Directory Protection: Goals, principle	implementation, secondary storage st ile concept; Access methods; Directory otection. Implementing File System: File implementation; Allocation methods; es and domain of protection, Access M ment: Disk Structure and Scheduling.	structure; File system e system structure; File system Free space management.							
Text Books:									
1) Abraham Silberscha Addison Wesley Reference books:	atz, Peter Baer Galvin , Greg Gagne: Op	perating System 7 th edition,							
1. D.M Dhamdhere Edition, Tata McGra		pt based Approach, 2nd							

OPERATING SYSTEMS

Credits: 04

UAI403C

Course Outcomes: At the end of the course the student should be able to

- 1. Explain the core structure and different services provided by Operating System at different levels
- 2. Apply the concepts of process scheduling algorithms and synchronization techniques in solving real time problems
- 3. Exhibit the knowledge of memory management techniques
- 4. Exhibit the knowledge of secondary storage management techniques and security solutions

UAI404C	Introduction to Data Science	Credits:03
L:T:P:3:0:0		CIE Marks:50
Total Hours/Week : 40/3		SEE Marks:50

UNIT - I	10 Hrs
Introduction: Data Science. Applications of data science. Data science relat Relationship between data science and Information science. Computational data science. Tools for data science. Issues of Ethics, Bias, and Privacy in Data S Data: Introduction, Data types: Structured Data, Unstructured Data, Unstructured Data. Data Collections: Open Data, Social Media Data, Multi Storage and Presentation. Data Pre-processing: Data Cleaning, Data Integration, Data Transformation Data Discretization.	ted to other field. thinking. Skills for Science. Challenges with modal Data, Data
UNIT – II	10 Hrs
 Techniques: Introduction, Data Analysis and Data Analytics, Descriptive A frequency Distribution, Measures of Centrality, Dispersion of a Distribution Diagnostic Analytics: Correlations, Predictive Analytics, Prescriptive Anal Analysis, Mechanistic Analysis, Regression. Tools for data science: Introduction, Getting Access to R, Getting Starte Control Structures, Functions, Importing Data, Graphics and Data Visua ggplot2, Loading the Data, Plotting the Data, Statistics and Machine Learnin Regression, Classification, Clustering. 	ytics, Exploratory d with R: Basics, lization: Installing
UNIT - III	10 Hrs
Machine learning for data science: Machine Learning Introduction Introduction, Machine Learning, Regression, Gradient Descent. Unsupervised learning: Introduction, Agglomerative Clustering, Introduction t Learning.	-
UNIT - IV	10 Hrs
 Applications, Evaluation, and Methods: Hands-On with Solving Data Proble Collecting and Analyzing Twitter Data, Collecting and Analyzing YouTube Data Reviews and Ratings. Data Collection, Experimentation, and Evaluation: Data Collection Method Question Types, Survey Audience, Survey Services, Analyzing Survey Data, Surveys, Interviews and Focus Groups, Why Do an Interview? Why Focus Group Focus Group Procedure, Analyzing Interview Data, Pros and Cons of Inte Groups, Log and Diary Data, User Studies in Lab and Field, Picking Data Colle Methods: Introduction to Quantitative Methods, Introduction to Qualitative Method Studies. Evaluation: Comparing Models, Training–Testing and A/ Validation. 	ta , Analyzing Yelp s: Surveys, Survey Pros and Cons of pups? Interview or erviews and Focus ection and Analysis e Methods, Mixed

Text Books:

1) A hands on introduction to Data Science, Chirag Shah, Cambridge University Press,

2020.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Reference books:

- 1) "Data Science from Scratch", Joel Grus, O'Rielly Publications, 2015.
- "Introduction to Data Science", Laura Igual and Santi Segui, Springer International Publications, 2017

Course Outcomes:

- 1. Identify and asses the needs of an organization for data science task
- 2. Collect, manage and use data to examine, analyze and interpret data
- 3. Apply statistical and ML algorithms to effectively generate useful information from structural and un structured data
- 4. Design, build and evaluate models that can be used to make predictions in real world phenomena
- 5. Communicate data science related information effectively in various formats to appropriate audience

UAI405C	OOPS with Java Programming	Credits:03
L:T:P:3:0:0		CIE Marks:50
Total Hours/Week: 40/3		SEE Marks:50

UNIT - I	10 Hrs
Java Programming Fundamentals: Object Oriented programming fe	•
evolution of Java: Java's lineage, byte code, Java Buzzwords, An overview	
Variables and Arrays, Operators, Control Statements. Introducing Classes	
Declaring Objects, Introducing Methods, Constructors, this keyword	, garbage collection,
method overloading.	
UNIT – II	10 Hrs

Inheritance: Inheritance Basics, Using Super, Creating a Multilevel Hierarchy, Method overridi hg, Dynamic Method Dispatch, Using Abstract Classes, Using final with Inheritance. String Handling : The string constructors, string length, Special String Operations, Character Extraction, String Comp arison, Searching Strings, Modifying a String. Packages and Interfaces: Packages, Access Protection.

UNIT - III

Importing packages and Interfaces. Exception Handling: Exception-Handling Fundamentals-Exception Classes, Exception Types, Uncaught Exceptions, Using try and catch, Multiple catch clauses, Neted try Statements, throw and finally statements. Multithreaded Programming: The Java Thread Moel, The Main Thread, Creating a thread Creating Multiple Threads, Using is Alive() and join(), Thread Priorities , Synchronization, Suspending, Resuming and Stopping Threads.

UNIT - IV

10 Hrs

10 Hrs

Files: The Stream Classes, Byte streams, Character Streams, Serialization and Console Class. Co Collections Overview, The Collection Interfaces: The collection Interface, The List Interface, Th Interface, The Queue Interface and The De queue Interface. The Collection Classes (Array List, List).

Text Books:

1) 1. Java The Complete Reference,- Herbert Schildt 9th Edition, MGH Education

Reference books:

- 1) Database management systems, Ramakrishnan, and Gehrke, 3rd Edition, 2014, McGraw Hill.
- 2) Core Java Volume 1- Fundamentals, Cay S Horstmann , Gary Cornell, 8th Edition Pearson Education.
- 3) Programming with Java, E Balagurusamy, 6th Edition, MGH.

Course Outcomes:

- 1. Explain the syntax and semantics of java programming language and basic concepts of Object Oriented Programming (OOP).
- 2. Identify classes, objects, members of a class and relationships among them needed for a specific problem.
- 3. Develop reusable programs using the concepts of inheritance, polymorphism, string and packages.
- 4. Apply the concepts of importing packages and interface, multithreading and exception handling to develop efficient and error free codes.

5. Develop interactive programs using file and collections.

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

Course	Programme Outcomes										PSO	PSO	PSO		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1	1										3		
CO2	3	3	3										3		
CO3	3	3	3										3		
CO4	3	3	3										3		
CO5	3	3	3										3		

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

June

UAI501C	Principles of AI	Credits:03
L:T:P:3:0:0		CIE Marks:50
Total Hours/Week: 40/03		SEE Marks:50

UNIT - I	10 Hrs						
Introduction: What is AI? Foundations and History of AI.							
Intelligent Agents: Agents and environment, Concept of Rationality, The nature of	of environment,						
The structure of agents.							
UNIT – II	10 Hrs						
Problem solving: Problem solving agents, Example problems, Searching for Solutio	ns, Uninformed						
Search.							
Strategies: Breadth First search, Depth First Search, Iterative deepening depth first	search.						
UNIT - III	10 Hrs						
Informed Search Strategies: Heuristic functions, Greedy best first search, A*se	earch. Heuristic						
Functions.							
Logical Agents: Knowledge-based agents, The Wumpus world, Logic, Prop	ositional logic,						
Reasoning patterns in Propositional Logic.							
First Order Logic: Representation Revisited, Syntax and Semantics of First Order lo	ogic, Using First						
Order logic.							
UNIT - IV 10 Hrs							
Inference in First Order Logic: Propositional Versus First Order Inference, Unif	fication, Forward						
Chaining, Backward Chaining, Resolution.							
Uncertain Knowledge and Reasoning: Quantifying Uncertainty: Acting under U	•						
Probability Notation, Inference using Full Joint Distributions, Independence, Bay	ye's Rule and its						
use. Wumpus World Revisited.							
Text Books:							
1) 1. Stuart J. Russell and Peter Norvig , Artificial Intelligence, 3rd Edition, Pear	rson, 2015.						
Reference Books:							
1) Elaine Rich, Kevin Knight, Artificial Intelligence, 3rd edition, Tata McGraw Hi							
2) George F Lugar, Artificial Intelligence Structure and strategies for cor	mplex, Pearson						
Education, 5 th Edition, 2011.							
Course Outcomes:	c 1.cc .						
 Apply knowledge of agent architecture, searching and reasoning technique applications. 	les for different						
Analyze Searching and Inferencing Techniques.							
3. Develop knowledge base sentences using propositional logic and first order	logic						
4. Demonstrating agents, searching and inferencing							

Course Outcomes		Programme Outcomes								PSO 1	PSO 2	PSO 3			
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	2	2										2	3	
CO2		3											2	3	
CO3			3										2	3	
CO4			2	2	2								2	3	

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

Jung

UAI502C	Machine Learning Algorithms	Credits:03
L:T:P:3:0:0		CIE Marks: 50
Total Hours/Week: 40/03		SEE Marks: 50

UNIT - I	10 Hrs						
Introduction: Introduction to Machine Learning, Examples of Machine Learning Ap	oplications. Well						
posed learning problems, Designing Learning System, Perspectives and issues in Machine Learning.							
Decision Tree Learning: Introduction, Decision tree representation, Appropriat	e problems for						
decision tree learning, the basic decision tree learning algorithm, Hypothesis							
decision tree learning, Inductive Bias in decision tree learning, Issues in decision tree							
UNIT – II	10 Hrs						
Artificial Neural Networks (ANN):Introduction, Neural Network Representati							
Problems For Neural Network Learning, Perceptron, Multilayer Networks							
propagation Algorithm, Remarks On The Back propagation Algorithm, An Illustrati Recognition.	ve Example: Face						
Hypothesis and Performance Evaluation: Basic Performance Criterion, Precision	and recall Other						
ways to measure Performance, Estimating Hypothesis Accuracy, Basics of Sampling							
approach for deriving confidence intervals, difference in error of two hypot							
learning algorithms.							
UNIT - III	10 Hrs						
Bayesian learning: Introduction, Bay's theorem, Maximum likelihood and least squ	uared hypothesis,						
Maximum likelihood hypothesis for predicting probabilities, Minimum Description	length principle,						
Bay's optimal classifier, Gibbs algorithm, Naive Bay's Classifier. An Example: Classify							
Instance Based Learning: Introduction, k-Nearest Neighbour Learning, L	ocally Weighted						
Regression, Radial Basis function, and case based reasoning.							
UNIT - IV	10 Hrs						
Dimensionality Reduction: Introduction, Subset Selection, Principal Components	=						
Analysis, Multi dimensional scaling, Linear discreminant analysis, isomap, Locally L	-						
Clustering : Introduction, Mixture Densities, K-means Clustering, Expectation Algorithm, Mixture Latent Variable models, Supervised learning after cluste							
clustering, Choosing the number of clusters	ing, merarchicar						
Text Books:							
1) Tom Mitchell, Machine Learning, McGraw- Hill Publications, 2nd Edition, 20	13.						
2) Ethem Alpaydin, Introduction to Machine Learning, MIT press, Cambridge, N							
London, 2nd Edition, 2010.	,						
Reference Books:							
1) Trevor Hastie. Robert Tipeshirani, Jerome Fredman, Elements of Statistical L	earning,						
Springer, 2nd Edition, 2010.							
2) Luis Pedro Coelho and Willi Richart, Building Machine Learning Systems with	n Python, PACKT						
Publication, 2nd Edition, 2013.							
Course Outcomes:							
1. Define machine learning and types of learning algorithms							
2. Explain various machine learning algorithms.							
3. Apply machine learning algorithm to solve problems of moderate compl	a						

- Apply machine learning algorithm to solve problems of moderate complexity.
 Analyze performance of algorithms by varying some parameters.
- 5. To formulate machine learning model for the simple problem.

Course		Programme Outcomes											PSO 1	PSO 2	PSO 3
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3												2	2	
CO2	2												3	3	
CO3		2	3		2								3	3	
CO4			2		2								2	3	
CO5					3								2	2	2

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

hur

UAI503C	Database Management Systems	03-Credits
Hrs/Week: 03	L:T:P:3:0:0	CIE Marks:50
Total Hours:40		SEE Marks:50

UNIT - I	10 Hrs
Introduction to Databases: Introduction, Characteristics of database approach	, Advantages of
using the DBMS approach, History of database applications. Overview of Databas	se Languages and
Architectures: Data Models, Schemas, and Instances. Three schema archite	ecture and data
independence, database languages, and interfaces, The Database System environ	ment. Conceptual
Data Modelling using Entities and Relationships: Entity types, Entity sets, attri	
structural constraints, Weak entity types, ER diagrams, examples, Sp	pecialization and
Generalization.	
UNIT – II	10 Hrs
Relational Model: Relational Model Concepts, Relational Model Constraint	
database schemas, Update operations, transactions, and dealing with cons	
Relational Algebra: Unary and Binary relational operations, additional relat	=
(aggregate, grouping, etc.) Examples of Queries in relational algebra. Mapping C	
into a Logical Design: Relational Database Design using ER-to-Relational mappin	-
definition and data types, specifying constraints in SQL, retrieval queries in SQL,	INSERI, DELEIE,
and UPDATE statements in SQL, Additional features of SQL. UNIT - III	10 Hrs
SQL: Advances Queries: More complex SQL retrieval queries, Specifying constrained	
and action triggers, Views in SQL, Schema change statements in SQL.Normali	
Design Theory-Introduction to Normalization using Functional and Multivalued	
	ndencies. Normal
Dependencies: Informal design guidelines for relation schema, Functional Dependencies	
Dependencies: Informal design guidelines for relation schema, Functional Dependencies on Primary Keys, Second and Third Normal Forms, Boyce-Cod	d Normal Form,
Dependencies: Informal design guidelines for relation schema, Functional Dependencies: Informal design guidelines for relation schema, Functional Dependence Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Cod Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fif	d Normal Form, th Normal Form.
Dependencies: Informal design guidelines for relation schema, Functional Dependencies: Informal design guidelines for relation schema, Functional Dependences forms based on Primary Keys, Second and Third Normal Forms, Boyce-Cod Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fif Normalization Algorithms: Inference Rules, Equivalence, and Minimal Cove	d Normal Form, th Normal Form. r, Properties of
Dependencies: Informal design guidelines for relation schema, Functional Dependencies: Informal design guidelines for relation schema, Functional Dependence Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Cod Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fif	d Normal Form, th Normal Form. r, Properties of , Nulls, Dangling
Dependencies: Informal design guidelines for relation schema, Functional Dependencies: Informal design guidelines for relation schema, Functional Dependences and Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Cod Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fif Normalization Algorithms: Inference Rules, Equivalence, and Minimal Cove Relational Decompositions, Algorithms for Relational Database Schema Design	d Normal Form, th Normal Form. r, Properties of , Nulls, Dangling
Dependencies: Informal design guidelines for relation schema, Functional Dependencies: Informal design guidelines for relation schema, Functional Dependency Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Cod Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fif Normalization Algorithms: Inference Rules, Equivalence, and Minimal Cove Relational Decompositions, Algorithms for Relational Database Schema Design tuples, and alternate Relational Designs, Further discussion of Multivalued dependence	d Normal Form, th Normal Form. r, Properties of , Nulls, Dangling
Dependencies: Informal design guidelines for relation schema, Functional Dependencies: Informal design guidelines for relation schema, Functional Dependences based on Primary Keys, Second and Third Normal Forms, Boyce-Cod Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fif Normalization Algorithms: Inference Rules, Equivalence, and Minimal Cove Relational Decompositions, Algorithms for Relational Database Schema Design tuples, and alternate Relational Designs, Further discussion of Multivalued dependencies and Normal Forms.	d Normal Form, th Normal Form. r, Properties of , Nulls, Dangling dencies and 4NF, 10 Hrs
Dependencies: Informal design guidelines for relation schema, Functional Dependencies: Informal design guidelines for relation schema, Functional Dependencies based on Primary Keys, Second and Third Normal Forms, Boyce-Cod Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fif Normalization Algorithms: Inference Rules, Equivalence, and Minimal Cove Relational Decompositions, Algorithms for Relational Database Schema Design tuples, and alternate Relational Designs, Further discussion of Multivalued dependencies and Normal Forms. UNIT - IV Transaction Processing: Introduction to Transaction Processing, Transaction and Desirable properties of Transactions, Characterizing schedules based or	d Normal Form, th Normal Form. er, Properties of , Nulls, Dangling dencies and 4NF, 10 Hrs System concepts,
Dependencies: Informal design guidelines for relation schema, Functional Depen Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Cod Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fif Normalization Algorithms: Inference Rules, Equivalence, and Minimal Cove Relational Decompositions, Algorithms for Relational Database Schema Design tuples, and alternate Relational Designs, Further discussion of Multivalued depen Other dependencies and Normal Forms. UNIT - IV Transaction Processing: Introduction to Transaction Processing, Transaction and Desirable properties of Transactions, Characterizing schedules based on Characterizing schedules based on Serializability, Transaction support in SQL.	d Normal Form, th Normal Form. er, Properties of , Nulls, Dangling dencies and 4NF, 10 Hrs System concepts, n recoverability,
Dependencies: Informal design guidelines for relation schema, Functional Dependencies: Informal design guidelines for relation schema, Functional Dependencies based on Primary Keys, Second and Third Normal Forms, Boyce-Cod Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fif Normalization Algorithms: Inference Rules, Equivalence, and Minimal Cove Relational Decompositions, Algorithms for Relational Database Schema Design tuples, and alternate Relational Designs, Further discussion of Multivalued dependencies and Normal Forms. UNIT - IV Transaction Processing: Introduction to Transaction Processing, Transaction and Desirable properties of Transactions, Characterizing schedules based on Characterizing schedules based on Serializability, Transaction support in SQL. Concurrency Control in Databases: Two-phase locking techniques for Concur	d Normal Form, th Normal Form. er, Properties of a, Nulls, Dangling dencies and 4NF, 10 Hrs System concepts, n recoverability, currency control,
Dependencies: Informal design guidelines for relation schema, Functional Depen Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Cod Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fif Normalization Algorithms: Inference Rules, Equivalence, and Minimal Cove Relational Decompositions, Algorithms for Relational Database Schema Design tuples, and alternate Relational Designs, Further discussion of Multivalued depen Other dependencies and Normal Forms. UNIT - IV Transaction Processing: Introduction to Transaction Processing, Transaction and Desirable properties of Transactions, Characterizing schedules based on Characterizing schedules based on Serializability, Transaction support in SQL. Concurrency Control in Databases: Two-phase locking techniques for Concurrency control based on Timestamp ordering, Multiversion Concurrency control based on Timestamp ordering, Multiversion Concurrency con-	d Normal Form, th Normal Form. er, Properties of a, Nulls, Dangling dencies and 4NF, 10 Hrs System concepts, n recoverability, currency control, ontrol techniques,
Dependencies: Informal design guidelines for relation schema, Functional Depen Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Cod Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fif Normalization Algorithms: Inference Rules, Equivalence, and Minimal Cove Relational Decompositions, Algorithms for Relational Database Schema Design tuples, and alternate Relational Designs, Further discussion of Multivalued depen Other dependencies and Normal Forms. UNIT - IV Transaction Processing: Introduction to Transaction Processing, Transaction and Desirable properties of Transactions, Characterizing schedules based on Characterizing schedules based on Serializability, Transaction support in SQL. Concurrency Control in Databases: Two-phase locking techniques for Conc Validation Concurrency control techniques, Granularity of Data items and Mu	d Normal Form, th Normal Form. er, Properties of a, Nulls, Dangling dencies and 4NF, 10 Hrs System concepts, n recoverability, currency control, ontrol techniques,
Dependencies: Informal design guidelines for relation schema, Functional Dependencies: Informal design guidelines for relation schema, Functional Dependencies based on Primary Keys, Second and Third Normal Forms, Boyce-Cod Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fif Normalization Algorithms: Inference Rules, Equivalence, and Minimal Cove Relational Decompositions, Algorithms for Relational Database Schema Design tuples, and alternate Relational Designs, Further discussion of Multivalued depen Other dependencies and Normal Forms. UNIT - IV Transaction Processing: Introduction to Transaction Processing, Transaction and Desirable properties of Transactions, Characterizing schedules based on Serializability, Transaction support in SQL. Concurrency Control in Databases: Two-phase locking techniques for Concurrency control based on Timestamp ordering, Multiversion Concurrency convalidation Concurrency control techniques, Granularity of Data items and Multocking.	d Normal Form, th Normal Form. er, Properties of a, Nulls, Dangling dencies and 4NF, 10 Hrs System concepts, n recoverability, currency control, ontrol techniques,
 Dependencies: Informal design guidelines for relation schema, Functional Dependencies: Informal design guidelines for relation schema, Functional Dependencies based on Primary Keys, Second and Third Normal Forms, Boyce-Cod Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fif Normalization Algorithms: Inference Rules, Equivalence, and Minimal Cove Relational Decompositions, Algorithms for Relational Database Schema Design tuples, and alternate Relational Designs, Further discussion of Multivalued dependencies and Normal Forms. UNIT - IV Transaction Processing: Introduction to Transaction Processing, Transaction and Desirable properties of Transactions, Characterizing schedules based on Characterizing schedules based on Serializability, Transaction support in SQL. Concurrency Control in Databases: Two-phase locking techniques for Concurency control based on Timestamp ordering, Multiversion Concurrency convalidation Concurrency control techniques, Granularity of Data items and Multocking. Text Books: 	d Normal Form, th Normal Form. er, Properties of b, Nulls, Dangling dencies and 4NF, 10 Hrs System concepts, n recoverability, currency control, ontrol techniques, litiple Granularity
Dependencies: Informal design guidelines for relation schema, Functional Dependencies: Informal design guidelines for relation schema, Functional Dependencies based on Primary Keys, Second and Third Normal Forms, Boyce-Cod Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fif Normalization Algorithms: Inference Rules, Equivalence, and Minimal Cove Relational Decompositions, Algorithms for Relational Database Schema Design tuples, and alternate Relational Designs, Further discussion of Multivalued depen Other dependencies and Normal Forms. UNIT - IV Transaction Processing: Introduction to Transaction Processing, Transaction and Desirable properties of Transactions, Characterizing schedules based on Serializability, Transaction support in SQL. Concurrency Control in Databases: Two-phase locking techniques for Concurrency control based on Timestamp ordering, Multiversion Concurrency convalidation Concurrency control techniques, Granularity of Data items and Multocking.	d Normal Form, th Normal Form. er, Properties of b, Nulls, Dangling dencies and 4NF, 10 Hrs System concepts, n recoverability, currency control, ontrol techniques, litiple Granularity

June

Reference books:

- 1) Database management systems, Ramakrishnan, and Gehrke, 3rd Edition, 2014, McGraw Hill
- 2) SilberschatzKorth and Sudharshan, Database System Concepts, 6th Edition, Mc-GrawHill, 2013.
- 3) Coronel, Morris, and Rob, Database Principles Fundamentals of Design, Implementation and Management, Cengage Learning 2012.

Course Outcomes:

- 1) Provide a strong foundation in database concepts, technology, and practice.
- 2) Practice SQL programming through a variety of database problems.
- 3) Demonstrate the use of concurrency and transactions in database.
- 4) Design and build database applications for real world problems.

Course		Programme Outcomes									PSO 1	PSO 2	PSO 3		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	3	1										3		
CO2	2	3	3										3		
CO3	2	2	3										3		
CO4	3	3	3										3		

UAI504E	Computer Graphics with Open GL	Credits:03
L:T:P:3:0:0		CIE Marks:50
Total Hours/Week: 40/03		SEE Marks:50

UNIT - I	10 Hrs				
Overview of Graphics Systems: Video Display Devices, Raster-Scan Displays, Gra	phics Workstations				
and Viewing Systems, Introduction to OpenGL, Graphics Output Primitives: Co	ordinate Reference				
Frames, Specifying A Two-Dimensional World-Coordinate Reference Frame in	1 OpenGL, OpenGL				
Point Functions, OpenGL Line Functions, Line Drawing Algorithms: DDA, Bresent	nam's Line-Drawing				
Algorithm, OpenGL Curve Functions, Circle Generating Algorithms: Midpoint	Circle Algorithm.				
Attributes of Graphics Primitives: OpenGL State Variables, Color and Graysc	ale, OpenGL Color				
Functions, OpenGL Point-Attribute Functions, OpenGL Line-Attribute Functions.	1				
UNIT – II	10 Hrs				
Fill-Area primitives, OpenGL Polygon Fill-Area Functions, OpenGL Vertex A Primitives, OpenGL Pixel-Array Functions, Character Primitives, OpenGL CharongenGL Display Lists, OpenGL Display-Window Reshape Function.					
Interactive Input Methods and Graphical User Interfaces: Graphical In	put Data, Logical				
Classification of Input Devices, Input Functions for Graphical Data, Interactive P					
Techniques, OpenGL Interactive Input-Device Functions, OpenGL Menu Function	tions, Designing a				
Graphical User Interface.					
UNIT - III Geometric Transformations-1: Basic Two-Dimensional Geometric Transformations-1:	10 Hrs ormations. Matrix				
Composite Transformations, Other Two-Dimensional Transformations, Ras Geometric Transformations, OpenGL Raster Transformations, Transformation Dimensional Coordinate Systems. Geometric Transformations-2: Geometric Transformations in Three-Dimension Dimensional Translation, Three-Dimensional Rotation, Three-Dimensional Scaling Dimensional Transformations, Other Three Dimensional Transformations, between Three Dimensional Coordinate Systems, Affine Transformations, C Transformations Functions.	ns between Two- nal Space, Three- g, Composite Three , Transformations				
UNIT - IV	10 Hrs				
 Two-Dimensional Viewing: The Two-Dimensional Viewing Pipeline, The clipping Window, Normalization and Viewport Transformations, OpenGL Two-Dimensional Viewing Functions, Clipping Algorithms, Two-Dimensional Point Clipping, Two-Dimensional Line Clipping: Cohen-Sutherland line Clipping, Polygon Fill-Area Clipping: Sutherlan-Hodgman Polygon Clipping, Curve Clipping, Text Clipping. Viewing: Classical and Computer Viewing, Viewing with a Computer, Positioning of the Camera, Simple Projections, Projections in OpenGL, Hidden-Surface Removal, Interactive Mesh Displays, Parallel-Projection Matrices, Perspective-Projection Matrices, Projections and Shadows. 					
Text Books:					
 Computer Graphics with OpenGL, Donald Hearn and Pauline Education, 3rd Edition, 2004. 	e Baker, Pearson				
2) 2. Interactive Computer Graphics A Top-Down Approach using	OpenGL Edward				
Angel Addison-Wesley, 5 th Edition, 2008.					

Fridalson Wesley, 5 Euron, 2000

July

Reference books:

- 1. Computer Graphics using OpenGL, F.S.Hill Jr. Pearson Education, 2nd Edition, 2001.
- 2. Computer Graphics, James D. Foley, Andries Van Dam, Steven K Feiner, John F. Hughes, Addison-Wesley, 1997.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Course Outcomes:

- 1. Explain the fundamental concepts of computer graphics.
- 2. Implement the graphics algorithms to draw geometric primitives using OpenGL.
- 3. Develop an interactive 2D and 3D graphics applications.
- 4. Demonstrate 2D viewing and clipping algorithms.
- 5. Construct the graphical model with lighting and shading patterns.

Course		Programme Outcomes									PSO 1	PSO 2	PSO 3		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	3	1	3			2						1		
CO2	3	3	1	3			2						1		
CO3	3	3		3			2						1		
CO4	3	3		3			2						1		
CO5	3	3		3			2						1		

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

UAI601C	Advanced AI and ML	Credits:03
L:T:P:3:0:0		CIE Marks:50
Total Hours/Week:40/03		SEE Marks:50

UNIT - I	10 Hrs						
Support Vector Machine (SVM): Basic terms, how does SVM works? Types of	SVM, mathematical						
intuition behind support vector machine, SVM kernel functions, applications of SVM, advantages							
and disadvantages of SVMs, differences between logistic regression and SVM, v-SVM.							
Advanced clustering techniques: Introduction to clustering, applications of	clustering, density						
based clustering algorithms, density reachability and density connectivity.	-						
types of points after the DBSCAN clustering is completed, algorithmic steps for	•						
the complexity of DBSCAN. BIRCH algorithm: stages of BIRCH algorithm, alg	-						
features, parameters of BIRCH, advantages of BIRCH. Differences between: DB	SCAN and K-means,						
BIRTH and K-means.							
Implementation of: SVM, DBSCAN, BIRCH algorithms using python.							
e-Resources:							
 https://www.analyticsvidhya.com/blog/2021/10/support-vector-machir 	iessvm-a-						
complete-guide-for-beginners/							
 https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythor 							
Radial Basis Function (RBF) Kernel: The Go-To Kernel by Sushanth Sre	eenivasa Towards						
Data Science							
 https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-mac 	chine-						
learning.html#:~:text=low%20point%20density							
,Density%2DBased%20Spatial%20Clustering%20of%20Applications%20v	vith%20Noise%20(
DBSCAN), is%20containing%20noise%20and%20outliers.							
 https://www.freecodecamp.org/news/8-clustering-algorithms-in-maching-in-mac	ne-learning-that-						
all-data-scientists-should-know/							
https://www.javatpoint.com/birch-in-data-mining	<u> </u>						
UNIT – II	10 Hrs						
Ensemble techniques: Definition, ensemble learning approaches. Bagging t	•						
forest, differences between decision tree and random forest, example for rand	dom forest, features						
of random forest. Boosting techniques: Working processes of boosting,	-						
elements, algorithm. AdaBoosting, XGBoost, differences between bagging and boosting							
techniques.							
Recommendation system: Content based technique: working processes	s advantages and						

Recommendation system: *Content based technique:* working processes, advantages and disadvantages. *Collaborative based technique:* working process, advantages and disadvantages. *Hybrid based techniques:* working process and advantages and disadvantages. Applications of recommendation system.

Implementation of: Random Forest, Content based and Collaborative based techniques using python.

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

e-Resources:

- https://www.pluralsight.com/guides/ensemble-methods:-bagging-versus-boosting
- https://www.wallstreetmojo.com/gradient-boosting/
- https://www.mygreatlearning.com/blog/random-forest-algorithm/
- Ensemble Learning Methods: Bagging, Boosting and Stacking (analyticsvidhya.com)
- https://www.geeksforgeeks.org/recommendation-system-in-python/
- https://www.nvidia.com/en-us/glossary/data-science/recommendation-

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

system/#:~:text=A%20recommendation%20system%20is%20an,demographic%20informati on%2C%20and%20other%20factors.

- https://towardsdatascience.com/introduction-to-recommender-systems-6c66cf15ada
- https://www.analyticsvidhya.com/blog/2021/07/recommendation-system-understandingthe-basic-concepts/
- https://www.iteratorshq.com/blog/an-introduction-recommender-systems-9-easyexamples/

UNIT - III

10 Hrs

10 Lrc

Introducing Neural Networks: Deep Learning at a glance: How deep learning works, differences between Machine Learning (ML) and Deep Learning (DL), Convolution Neural Network (CNN) architecture, illustration of different operations in CNN model(convolution, padding, flattening), advantages and disadvantage of CNN model, building an CNN, types of pre-defined CNN models:- VGG, AlexNet, LeNet, ResNet and GoogleNet.

A brief introduction to TensorFlow and Keras: Differences between Keras and TensorFlow, advantages and disadvantage of Keras and TensorFlow.

Implementation of CNN: using keras and TensorFlow.

e-Resources:

- https://www.tensorflow.org/tutorials/images/cnn
- https://medium.com/analytics-vidhya/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5
- https://www.javatpoint.com/machine-learning-vs-deep-learning
- https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/

- https://www.ibm.com/in-en/topics/convolutional-neuralnetworks#:~:text=The%20convolutional%20layer%20is%20the%20core%20building%20blo ck%20of%20a,matrix%20of%20pixels%20in%203D.
- https://www.analyticsvidhya.com/blog/2021/06/building-a-convolutional-neural-networkusing-tensorflow-keras/

01011 - 10	10 11 3
Knowledge Representation: Techniques of knowledge represent	ation, Ontological
Engineering, Categories and Objects, Events, Mental Events and Mental	Objects, Reasoning
systems for categories, the internet shopping world.	

Quantifying Uncertainty: Probabilistic reasoning in Artificial intelligence, Bayes' theorem in Artificial intelligence, Application of Bayes' theorem in Artificial intelligence, Bayesian Belief Network in artificial intelligence

e-Resources:

- https://www.javatpoint.com/ai-techniques-of-knowledge-representation
- https://mitu.co.in/wp-content/uploads/2022/01/5.-Knowledge-Representation-in-AI.pdf
- https://www.uio.no/studier/emner/matnat/ifi/nedlagteemner/INF5390/v14/forelesninger/inf5390-07-knowledge-representation.pdf
- https://pages.mtu.edu/~nilufer/classes/cs5811/2016-fall/lecture-slides/cs5811-ch13quantifying-uncertainty.pdf
- Valen, J., Balki, I., Mendez, M. et al. Quantifying uncertainty in machine learning classifiers for medical imaging. Int J CARS 17, 711–718 (2022). https://doi.org/10.1007/s11548-022-02578-3

Text Books:

- 1. Giuseppe Bonaccorso, "Machine Learning Algorithms", Second Edition, ISBN:978-1-78934-799-9, Packet Publishing Ltd., Birmingham,UK.
- 2. Peter Norvig and Stuart J. Russell, "Artificial Intelligence: A Modern Approach", third edition, ISBN:978-93-325-4351-5, pearson, 2021.(Chapter 12 and Chapter 13)

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Reference books:

1. Tom Mitchel, "Machine Learning", International Edition 1997, McGraw Hill Education.

e-Resources and other Digital Material:

1. https://onlinecourses.nptel.ac.in/noc21_cs24/preview

2. https://onlinecourses.nptel.ac.in/noc20_cs62/preview

Course Outcomes:

1. Apply and Analyze various algorithms for SVM, and Clustering techniques.

2. Analyze and Apply basic concepts of ensemble, and recommendation systems.

3. Understand and Apply the basic concepts of CNN using Tensor Flow and Keras

4. **Understand** and **Contrast** the concept of Knowledge Representation and Quantifying Uncertainty.

5. **Apply** and **Analyze** machine learning algorithms on given data and interpret the results obtained.

Course Outcomes		Programme Outcomes								PSO	PSO	PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	3	1							1	2	3	1
CO2	1	2	3	2	1							1	2	3	1
CO3	1	2	3	2	1							1	2	3	1
CO4	2	2	3	2	1							1	2	3	1
CO5	2	2	3	3	2							1	2	3	1

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

UAI602C	Cloud Computing	Credits:03
L:T:P:3:0:0		CIE Marks:50
Total Hours/Week:40/03		SEE Marks:50

	UNIT - I	10 Hrs
Systen	n Models and Enabling Technologies:	
Scalab	le Computing towards Massive Parallelism; System Models for Distributed and Clou	d Computing
Cluste	rs of Cooperative Computers, Grid Computing Infrastructures, Peer-to-Peer Net	work Families
Cloud	Computing over the Internet; Parallel and Distributed Programming Models.	
Compu	uter Clusters:	
	ring for massive parallelism – Trend, Design objectives, Issues; Clusters and MPP	architectures
Design	Principles – SSI features. UNIT – II	10 Hrs
Cloud	platform architecture over virtualized data centers:	
	computing and service models; data center design and interconnection networks;	architecture
	of compute and storage clouds;	
-	cloud platforms (GAE, AWS and Azure); inter cloud resource management.	
	UNIT - III	10 Hrs
Cloud	security and trust management:	
Cloud	Programming and Software Environments:	
	es of Cloud and Grid Platforms; Parallel and Distributed Programming Paradig	ms - Paralle
	Iting and Programming Paradigms., MapReduce, Twister, and Iterative MapRed	
•	r from Apache.	uuce, mauoop
Library	UNIT - IV	10 Hrs
Progra	mming Support of Google App Engine, Programming Amazon AWS and Microsoft Azu	
•	ing cloud software environments, Enabling technologies for Internet of Things	
-	nce books:	
1)	Kai Hwang, Geoffrey C. Fox, Jack J. Dongarra, Distributed & Cloud Computing, Morg	an Kaufmann
	ELSEVIER Publishers, 2012	
2)	Dinakar Sitaram, Geeta Manjunath, Moving to the cloud, SYNGRESS/ ELSEVIER, 2012	
Course	Outcomes:	
1.	To explain various computing paradigms and system models for massive computing	g.
2.	To describe service models, design of data centres and various cloud platforms.	
3.	To analyze data flow in parallel and distributed programming models and apply the	m to solve
	problems on distributed systems.	
4.	To describe public cloud platforms, emerging cloud software environments and	
	enabling technologies for internet of things.	

enabling technologies for internet of things.

CO id	Course Outcomes	I- 04– SI	IS -PO-2	IS -PO-3	IS -PO-4	IS -PO-5	IS -PO-6	IS -PO-7	IS -PO-8	IS -PO-9	IS -PO_10	IS -PO_11	IS -PO_12
1	To explain various computing paradigms and system models for massive computing			2	2	3							
2	To describe service models, design of data centres and various cloud platforms			2	2	3							

3	To analyze data flow in parallel and distributed programming models and apply them to solve problems on distributed systems		3	3	3	1	1	2		
	problems on distributed systems									

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

Jung

4	To describe public cloud platforms, emerging cloud software environments and enabling technologies for		2	2	3				
	internet of things.								

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

July

UAI603C	Computer Networks	Credits:03
L:T:P:3:0:0		CIE Marks:50
Total Hours/Week:40/03		SEE Marks:50

LINIT I

UNIT-T	10 Hrs
Introduction to Network and Communication: Definition, Network topology: Mesh	(advantages
and disadvantages), Star (advantages and disadvantages), Ring (advantages and dis	advantages).
Types of Networks based on size: LAN, WAN, MAN. Classes of transmission me	edia: Guided
(wired)-Twisted pair cable, Coaxial cable, Fiber-optic cable. Unguided (wireless)	-Free space.
Propagation modes: Switching (switched networks)- Circuit switched networks, Pacl	ked switched
network-datagram circuit network, virtual circuit network, message switched networ	k. OSI (Open
System Interconnection): Seven layers, how data is referred to in the OSI model	? Interaction
between layers in the OSI model, advantages of OSI model, differences between OS	SI and TCP/IP
models. Port number, port range groups. IP address: Types of IP addresses- IPv4, IPv	6, IP address
format, classes of IP address. Protocols and Standards: The key elements of a proto	col, Standard
Creation committees.	

e-Resources:

- https://datacommandnet.blogspot.com/p/protocols-and-standards.html
- https://www.javatpoint.com/ip-address-format-and-table
- https://data-flair.training/blogs/osi-model-in-computer-network/
- https://www.geeksforgeeks.org/how-communication-happens-using-osi-model/
- https://www.geeksforgeeks.org/difference-between-ip-address-and-port-number/
- https://www.studytonight.com/computer-networks/protocols-and-standards
- https://www.geeksforgeeks.org/difference-between-ip-address-and-port-number/
- https://www.javatpoint.com/ip-address-format-and-table

UNIT – II

10 Hrs

10 Ure

Data link layer: Data link layer services and flow control techniques. Design issues. *Framing:* Character count, Flag bytes with byte stuffing, Starting and ending flags, with bit stuffing. *Elementary data link protocols:* Utopian simplex protocol-, a simplex stop and wait protocol for an error-free channel. *Noisy channel: Sliding Window protocols:* Stop-and-Wait Automatic Repeat Request, Go-Back-N Automatic Repeat Request. *Controlled Access Protocols:* Reservation, Polling, Token Passing. *Error Detection:* Simple Parity check, Two-dimensional Parity check, Checksum, Cyclic redundancy check.

e-Resources:

- https://www.tutorialspoint.com/what-is-byte-stuffing-in-computer-networks
- https://www.geeksforgeeks.org/stop-and-wait-arq/
- https://www.javatpoint.com/go-back-n-arq

UNIT - III

10 Hrs

Network Layer: Services, *Routing algorithms*- The Optimality Principal, Shortest Path Algorithm, Flooding, Distance Vector Routing, Link State Routing, Hierarchical routing, Congestion Control Algorithms.

Transport layer: Services, advantage and disadvantages, responsibility of transport layer, Elements of Transport Protocols, Congestion control. The Internet Transport Protocols (TCP) and User Datagram Protocol (UDP), differences between TCP and UDP and features of network layer.

e-Resources:

- https://citizenchoice.in/course/computer-networks-theory/Chapter%204/2-process-to-process-delivery
- https://www.geeksforgeeks.org/transport-layer-responsibilities/
- https://www.tutorialspoint.com/what-are-the-elements-of-transport-protocol
- <u>https://www.geeksforgeeks.org/differences-between-tcp-and-udp/</u>

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

UNIT - IV		10 Hi	rs
The application Layer: Functions of application layer, Application layer set	ervices,	protocol	s. DNS
(Domain Name System): Domain Name Space, Distribution of Name Space	e, DNS i	n the in	ternet,
resolution, applications of DNS. Electronic mail: Components of Email Sy	vstem. E	-Mail Pr	otocol-
SMTP (Simple Mail Transfer Protocol), POP (Post Office Protocol), IMAP	(Intern	et Mail	Access
Protocol). Architecture of WWW, Web Documents: static, dynamic, and			
Security: Goals of Network Security, Security Services, Types of Network Security	curity ar	nd classif	fication
of Security Attacks.			
e-Resources:			
 https://www.geeksforgeeks.org/computer-security-and-its-challenge 	es/		
 https://www.tutorialspoint.com/internet_technologies/e_mail_protocols.htm 			
https://www.javatpoint.com/computer-network-application-layer			
Text Books:	•••		
1) 1. Andrew S Tanenbaum, David. J. Wetherall, "Compute	er Netwo	orks", Pe	earson
Education, 5 th Edition,			
Reference books:			
1) Behrouz A. Forouzan, "Data Communications and Networking", Ta	ta ivicgr	aw-Hill,	
Fourth Edition			
2) Kurose and Ross, Computer Networking- A Top-Down approach,			
3) Pearson, 5th edition e-Resources and other Digital Material:			
1. https://www.digimat.in/nptel/courses/video/106105183/L01.html			
Course Outcomes:			
1. Understand and Contrast the concept of computer network co	ncents	with it	tunos
topologies, transmission media, layered protocols and standards,	-		
and IP address and discuss the functionalities of each layer in these		moucis	, port
2. Discuss and Analyze flow control and error control mechanisms		lv them	using
standard data link layer protocols.		ry them	using
3. Analyze and apply various routing algorithms to find shortest path	s for nac	ket deliv	erv
Explain the details of Transport Layer Protocols (UDP, TCP) and sug	-		-
able/unreliable communication.	Pescapp	opriate	210
4. Analyze the features and operations of various application laye	r protoc	ols suc	h as
HTTP, DNS, SMTP, need of network security.	P. 5100		
Course Outcomes Programme Outcomes	PSO	PSO	PSO
1 2 3 4 5 6 7 8 9 10 11 12	1	2	3

Course Outcomes		Programme Outcomes								PSO	PSO	PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2				1							1	2		1
CO2	2				1							1	2		1
CO3	2				1							1	2		1
CO4	2				1							1	2		1

Jung

UAI604E	Natural Language Processing	Credits:03
L:T:P:3:0:0		CIE Marks:50
Total Hours/Week: 40/03		SEE Marks:50

UNIT - I	10 Hrs
Introduction to NLP, Empirical Laws, Text Processing, Spelling Correction: Edit Distan	ice, Weighted
Edit Distance, Other Variations, Noisy Channel Model for Spelling Correction, N-Gr	
Models, Evaluation of Language Models, Basic Smoothing, Computational Morpho	ology, Finite -
State Methods for Morphology.	
UNIT – II	10 Hrs
Introduction to POS Tagging, Hidden Markov Models for POS Tagging, Viterbi Decod	ing for HMM,
Parameter Learning, Syntax – Introduction, Syntax – Parsing, Syntax - CKY, PCFGs, In	troduction to
PCFGs - Inside-Outside Probabilities, Dependency Grammars and Parsing – Introducti	on, Transition
Based Parsing : Formulation and learning.	
UNIT - III	10 Hrs
Distributional Semantics – Introduction, Distributional Models of Semantics,	Distributional
Semantics : Applications, Structured Models, Word Embeddings Lexical Sema	ntics ,Lexical

Semantics – Word net Word Sense Disambiguation ,Novel Word Sense detection, Topic Models :

Text Summarization – LEXRANK, Optimization Based Approaches for Summarization, Summarization Evaluation, Text Classification, Sentiment Analysis – Introduction, Sentiment Analysis - Affective Lexicons, Learning Affective Lexicons, Computing with Affective Lexicons,

10 Hrs

Introduction, Latent Dirichlet Allocation : Formulation, Gibbs Sampling for LDA, Applications.

Entity Linking, Information Extraction – Introduction, Relation Extraction, Distant Supervision,

UNIT - IV

 Text Books:
 1) Dan Jurafsky and James Martin. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. Prentice Hall, Second Edition, 2009. Some draft chapters of the third edition are available online: https://web.stanford.edu/~jurafsky/slp3/

2) Chris Manning and Hinrich Schütze. Foundations of Statistical Natural Language Processing. MIT Press, Cambridge, MA: May 1999

Course Outcomes:

Aspect – Based Sentiment Analysis.

- 1. Extract information from text automatically using concepts and methods from natural language processing (NLP) including stemming, n-grams, POS tagging, and parsing
- 2. Analyze the syntax, and semantic using computational methods
- 3. Apply statistical and machine learning algorithms to natural language processing
- 4. Design NLP-based applications using NLP tools

UAI605E	Cyber Security	Credits:03
L:T:P:3:0:0		CIE Marks:50
Total Hours/Week:40/03		SEE Marks:50

UNIT - I	10 Hrs
Introduction to Cybercrime: Cybercrime: Definition and Origins of the Word	d, Cybercrime and
Information Security, Who are Cybercriminals? Classifications of Cybercrimes	, Cybercrime: The
Legal Perspectives, Cybercrimes: An Indian Perspective, Cybercrime and the	Indian ITA 2000.
Cyber offenses: How Criminals Plan Them: Introduction, How Criminals Plan the	Attacks,
UNIT – II	10 Hrs
Social Engineering, Cyber stalking, Cyber cafe and Cybercrimes. Bot ne	ets: The Fuel for
Cybercrime, Attack Vector. Tools and Methods Used in Cybercrime: Introduct	ion, Proxy Servers
and Anonymizers, Phishing, Password Cracking, Key loggers and Spywares.	
UNIT - III	10 Hrs
Virus and Worms, Trojan Horses and Backdoors, Steganography, DoS and DDoS	Attacks, Attacks on
Wireless Networks. Understanding the people on the scene: Introduction, ur	nderstanding cyber
criminals, understanding cyber victims, understanding cyber investigators.	
UNIT - IV	10 Hrs
	curity Concepts,
Understanding Basic Cryptography Concepts, Making the Most of Hardwa	
Security. Cybercrime Detection Techniques: Security Auditing and Log: Aud	-
platform, Firewall Logs, Reports, Alarms, and Alerts, Commercial Intrusion Detect	ion Systems
Text Books:	
1) Sunit Belapure and Nina Godbole, "Cyber Security: Understanding Cyber	•
Forensics And Legal Perspectives", Wiley India Pvt Ltd, ISBN: 978-81-265-	
2) Debra Little John Shinder and Michael Cross, "Scene of the cybercrin	ne", 2nd edition,
Syngress publishing Inc, Elsevier Inc, 2008	
Reference books:	
 Jake VanderPlas, "Python Data Science Handbook: Essential Tools for We 1 st Edition, O'Reilly Media, 2016. ISBN-13: 978-1491912058 	orking with Data",
 Charles Dierbach, "Introduction to Computer Science Using Python", 1 India Pvt Ltd, 2015. ISBN-13: 978-8126556014 	st Edition, Wiley
3) Wesley J Chun, "Core Python Applications Programming", 3rd Edition, F	Pearson Education
India, 2015. ISBN-13: 978-9332555365	
Course Outcomes:	-
1. Describe the cyber crime terminologies.	
2. Analyze cybercrime in mobiles and wireless devices along with the too	ls for Cybercrime
and prevention	-
3. Analyze the motive and causes for cybercrime, cybercriminals, and investi	gators.
 Apply the methods for understanding criminal case and evidence, de criminal case and evidence. 	etection standing

June

		PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
No	Programme Outcomes Course Outcomes															
1	Familiarize the cyber crime terminologies and Acts	1							2					1		
2	Illustrate tools and methods used for cybercrime.		2		3	3								1		
3	Analyze the motive and causes for cybercrime, cybercriminals, and investigators					2								2		
4	Apply the methods for detection and prevention of cyber crimes.					3							2	3		

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

June

Basaveshwar Engineering College, Bagalkote Department of Artificial Intelligence and Machine Learning Engineering Scheme of Teaching and Evaluation (Academic Year 2021 – 2022 Admitted NEP)

	1									
Sl.	SUBJECT	SUBJECT	CRE	H	OUR	S/	EX	AMIN/	ATION	
No	CODE		DITS		WEEF	Κ	MARKS			
				L	Т	Р	CIE	SEE	TOTAL	
1.	21UMA301C	Numerical Techniques and	03	03	-	-	50	50	100	
		Integral Transforms								
2.	21UAI312C	Data Structures and	03	03	-	-	50	50	100	
		Applications								
3.	21UAI316C	Computer Organization	03	03	-	-	50	50	100	
4.	21UAI304C	AI and its Applications	03	03	-	-	50	50	100	
5.	21UAI305C	Problem Solving with	03	03	-	-	50	50	100	
		Python								
6.	21UAI313L	Data Structures Lab	01	-	-	02	50	50	100	
7.	21UAI314L	Python Programming Lab	01			02	50	50	100	
8.	21UAI315L	Working with Office	01	01	-	-	50	50	100	
9.	21UHS324C	Universal Human Values – II	01	01	-	-	50	50	100	
10.	21UHS321C	Constitution of India	01	01	-	-	50	50	100	
		Total	20	18	00	04	500	500	1000	

III Semester BE

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

Basaveshwar Engineering College, Bagalkote Department of Artificial Intelligence and Machine Learning Engineering Scheme of Teaching and Evaluation (Academic Year 2021 – 2022 Admitted NEP)

Sl. No	Category	Subject Code	Subject Title	Credit		Hour Weel		Exa	aminatio	on Marks
INO		Code		S	L	Т	Р	CIE	SEE	TOTAL
1.	BSC	21UMA401C	Statistics and Probability Distribution	03	03	-	-	50	50	100
2.	PCC	21UAI402C	Analysis & Design of Algorithms (I)	04	03	-	02	50	50	100
3.	PCC	21UAI403C	Operating Systems	03	03	-	-	50	50	100
4.	PCC	21UAI404C	Introduction to Data Science	03	03	-	-	50	50	100
5.	PCC	21UAI417C	Embedded Systems (I)	03	02	-	02	50	50	100
6.	PCC	21UAI416L	Data Science Lab	01	-	-	02	50	50	100
7.	INT	21UAI409I	Internship	02	-	-	-	50	50	100
8.	HSSM	21UHS422C 21UHS423C	Sanskrutika Kannada **/Balake Kannada***	01	01	-	-	50	50	100
9.		21UMA401 M	Bridge Course Mathematics – II *	00	03	-	-	50	50	100
			Total	20	18	-	06	450	450	900

IV Semester BE

*For lateral entry (Diploma) students only

**Students who have studied Kannada at primary level

*** Students who have not studied Kannada at primary level

21UAI312C	Data Structures and Applications	Credits: 03
L:T:P:3:0:0		CIE Marks:50
Total Hours/Week: 40/03		SEE Marks:50

	4							
UNIT - I	10 Hrs							
The stack: Definition and Examples: Primitive operations, An Example, The								
Abstract data type. Representing Stacks in C: Implementing pop operation,	-							
exceptional conditions, Implementing the push operations. , An Example- Infix Prefix Pagia Definitions and Examples, Evaluating a postfix expression. Program								
Prefix: Basic Definitions and Examples, Evaluating a postfix expression, Program postfix expression, Limitations of the program, Converting an expression from Inf								
Program to convert an expression from Infix to Postfix.	lix to i ostiix,							
UNIT – II	10 Hrs							
Recursion : Recursive definition and processes: The factorial function, Properties								
definitions or Algorithms. , Recursion in C: Factorial in C., writing recursive pr								
Towers of Hanoi Problem.	8							
Queues: The queue and its sequential representation: The queue as an abstract data type, C								
implementation of queues, The insert operation, The priority queue, Array implen	nentation of a							
priority queue.								
Lists: Linked lists: Inserting and removing nodes from a list, Linked implementation of								
stacks, The getnode and freenode operations, Linked implementation of queues, The linked list								
as a data structure, Examples of list operations, List implementation of priority queues, Header								
Nodes.	10							
UNIT - III	10 Hrs							
Lists in C: Array implementation of lists, Limitations of the array implementation	-							
and freeing dynamic variables, Linked lists using dynamic variables, Queues								
Examples of list operations in C, Non integer and non homogeneous lists, Co	1 0							
dynamic and array implementation of lists, Implementing Header Nodes.	An example:							
simulation using linked lists.								
Other list structures: Circular lists, The stack as a circular list, The queue as a	a circular list,							
Primitive operations on circular lists, The Josephus problem, Header nodes, Add	lition of long							
positive integers using circular lists.								
UNIT - IV	10 Hrs							
Trees: Binary trees: Basics, Operation on Binary trees, Applications of Binary	trees. Binary							
tree representations: Node representations of Binary trees, Node Representation of	f binary trees,							
Internal & external nodes, Implicit array representation of Binary trees, Choosing	a Binary tree							
representation, Binary tree traversal in C, traversal using a father field, heteroge	-							
trees. Trees and their applications : C representation of trees, Tree travers	•							
expressions as trees, Evaluating an expression tree, Constructing tree.	suis, General							
expressions as trees, Evaluating an expression tree, Constructing tree.								
Text Books:								
1. Data structure using C", Aaron M. Tennenbaum, Yedidyah Langsam an	nd Moshe J.							
Augenstein, Pearson Education/PHI 2006.								
2								

2.

Reference books:

- 1. Behrouz A. Forouzan and Richard F. Gilberg, Thomson, "Computer Science A structured Programming Approach using C", II edition, 2003.
- 2. Richard F. Gilberg and Behrouz, "Data structures A pseudo code approach with c ", Thomson, 2005.
- 3. Robert Kruse and Breuse Leung, "Data structures and program Design in C", PEARSON Education, 2007.
- 4. Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in C, 2nd Ed, Universities Press, 2014.
- 5. Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st Ed, McGraw Hill, 2014.
- 6. Reema Thareja, Data Structures using C, 3rd Ed, Oxford press, 2012.

Course Outcomes:

- CO 1. Identify different data structures and their applications
- **CO 2**. Apply stack and queues in solving problems.
- CO 3. Demonstrate applications of linked list.
- CO 4. Explore the applications of trees to model and solve the real-world problem.

Course Outcomes		Programme Outcomes											PSO 1	PSO 2	PSO 3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	2	2										1		
CO2		3	3	2	1								1		
CO3		3	3	2	1								1		
CO4		3	3	2	1								1		

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

21UAI316C	Computer Organization	Credits:03
L:T:P:3:0:0		CIE Marks:50
Hours/Week:40/03		SEE Marks:50

UNIT - I	10 Hrs									
Simplification of Boolean Expressions: K-maps and The Quine-McCluskey m	0									
Design with MSI Components, Flip- Flops, Counters: Binary adders and subtrac										
adders, Comparators, Decoders, Multiplexers. The basic Bi-stable element, Late										
Slave flip-flops (Pulse-Triggered flip-flops), Edge triggered flipflops, Characteris	tic equations,									
Registers, Counters, Design of synchronous counters.	40.77									
	10 Hrs									
Basic structure of Computers: Computer types, Functional Units, Basic operation										
Bus structures. Machine instructions and programs: Numbers, Arithmetic operations and										
characters, Memory locations and addresses, Memory operations, Instructions and instruction										
sequencing, Addressing modes.										
UNIT - III	10 Hrs									
Input/output organization: Accessing I/O devices, Interrupts - Interrupt hardw										
and Disabling interrupts, Handling multiple devices, Controlling device requests										
Direct memory access - Bus arbitrations, Buses - Asynchronous bus and Synchronous bus,										
Interface circuits - Parallel port and serial port, Standard I/O Interfaces - Peripheral component										
interconnect Bus, SCSI bus, USB.										
The memory system: Some basic concepts, Semiconductor RAM memories - Internal organization of memory chips, Static memories, Syncronous DRAMs, Syncronous DRAMs,										
Read only memories, speed, size, and cost, cache memories.	ous DRAMs,									
UNIT - IV	10 Hrs									
Arithmetic Unit: Addition and subtraction of signed numbers, Design of										
Multiplication of positive numbers, Signed operand multiplication, Fast multiplic										
Division.	ation, integer									
Basic Processing Unit: Some fundamental concepts, Execution of complete	e instruction									
Hardwired control, Micro programmed control, Micro instructions.										
Text Books:										
1. Donald D. Givone, Digital Principles and Design, McGraw Hill Edition 200)2									
2. Hamacher, Zvonko Vranesic, Safwat Zaky, 2002, "Computer Organiza										
Edition, MGH.	,									
Reference books:										
1. J. P. Hayes, 1998, "Computer Architecture and Organization", 3 th Edition, N	AGH.									
 William Stallings, 2007, "Computer Organization and Architecture", 7th Edition, PHI. 										
Course Outcomes:										
CO1: Understand the basic concepts of Boolean algebra and digital logic design.										
CO2: Explain the functional units, addressing modes, instruction formats and assen	nbly									
programming.										
CO3: Demonstrate the organization of various I/O devices and system memory hier	rarchy.									

CO4: Design of arithmetic and basic processing units

Juli

Course Outcomes											PSO 1	PSO 2	PSO 3		
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	1	3	2			1						1		
CO2	3	2	3	1			2								
CO3	3	1	3	1			1						1		
CO4	3	2	3	3			1						1		

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

Jung

21UAI304C	AI and Its Applications	03-Credits
Hrs/Week:03	L:T:P:3:0:0	CIE Marks:50
Total Hours:40		SEE Marks:50

UNIT - I	10 Hrs			
Introducing AI: Defining the Term AI, Discerning intelligence, Discovering four ways to				
define AI, Understanding the History of AI, Starting with symbolic logic at	Dartmouth,			
Continuing with expert systems, Overcoming the AI winters, Considering AIUse	es, Avoiding			
AI Hype, Connecting AI to the Underlying Computer.				
Defining the Role of Data: Finding Data Ubiquitous in This Age, Understand	ing Moore's			
implications, Using data everywhere, Putting algorithms into action.				
Considering the Use of Algorithms: Understanding the Role of Algorithms, Understanding the Role of Algorithm	nderstanding			
what algorithm means, Starting from planning and branching, Playing advers	arial games,			
Using local search and heuristics, Discovering the Learning Machine, Levera	aging expert			
systems, Introducing machine learning, Touching new heights.				
Pioneering Specialized Hardware: Relying on Standard Hardware, Unders	tanding the			
standard hardware, Describing standard hardware deficiencies, Using GPUs, Con	nsidering the			
Von Neumann bottleneck, Defining the GPU, Considering why GPUs work well	l, Creating a			
Specialized Processing Environment, Increasing Hardware Capabilities, Adding Specialized				
Sensors, Devising Methods to Interact with the Environment.				
UNIT – II	10 Hrs			
Seeing AI Uses in Computer Applications: Introducing Common Application Types,				
Using AI in typical applications, Realizing AI's wide range of fields, Considering the				
Chinese Room argument, Seeing How AI Makes Applications Friendlier, Performing				
Competing Automatically Considering the kinds of competing Second the herefits of				

Chinese Room argument, Seeing How AI Makes Applications Friendlier, Performing Corrections Automatically, Considering the kinds of corrections, Seeing the benefits of automatic corrections, Understanding why automated corrections don't work, Making Suggestions, Gettingsuggestionsbasedonpastactions, Gettingsuggestionsbasedongroups, Obtaining the wrong suggestions

Obtaining the wrong suggestions, Considering AI-based Errors.

Using AI to Address Medical Needs: Implementing Portable Patient Monitoring, Wearing helpful monitors, Relying on critical wearable monitors, Using movable monitors, Making Humans More Capable, Using games for therapy ,Considering the use of exoskeletons, Addressing Special Needs, Considering the software-based solutions, Relying on hardware augmentation, Seeing AI in prosthetics, Completing Analysis in New Ways, Devising New Surgical Techniques, Making surgical suggestions, Assisting a surgeon, Replacing the surgeon with monitoring, Performing Tasks Using Automation, Working with medical records, Predicting the future, Making procedures safer, Creating better medications, Combining Robots and Medical Professionals.

Relying on AI to Improve Human Interaction: Developing New Ways to Communicate, Creating new alphabets, Automating language translation, Incorporating body language, Exchanging Ideas, Creating connections, Augmenting communication, Defining trends , Using Multimedia , Embellishing Human Sensory Perception, Shifting data spectrum, Augmenting human senses

10 Hrs

UNIT - III

Performing Data Analysis for AI: Defining Data Analysis, Understanding why analysis is important, Reconsidering the value of data, Defining Machine Learning, Understanding how machine learning works. Understanding the benefits of machine learning, Being useful; being mundane, Specifying the limits of machine learning, Considering How to Learn from Data, Supervised learning, Unsupervised learning, Reinforcement learning.

Employing Machine Learning in AI: Taking Many Different Roads to Learning, Discovering five main approaches to AI learning, Delving into the three most promising AI learning, approaches, Awaiting the next breakthrough, Exploring the Truth in Probabilities, Determining what probabilities can do, Considering prior knowledge, Envisioning the world as a graph, Growing Trees that Can Classify, Predicting outcomes by splitting data, Making decisions based on trees, Pruning overgrown trees.

Developing Robots and flying with drones: Defining Robot Roles, Overcoming the sci-fi view of robots, Knowing why it's hard to be a humanoid, Working with robots, Assembling a Basic Robot, Considering the components, Sensing the world, Controllingarobot, Acknowledging the State of the Art, Flying unmanned to missions, Meeting the quadcopter, Defining Uses for Drones, Seeing drones in non military roles, Powering up drones using AI, Understanding regulatory issues.

UNIT - IV

10 Hrs

Understanding the Non starter Application: Using AI Where It Won't Work, Defining the limits of AI, Applying AI incorrectly, Entering a world of unrealistic expectations, Considering the Effects of AI Winters, Understanding the AI winter, Defining the causes of the AI winter, Rebuilding expectations with new goals, Creating Solutions in Search of a Problem, Defining a gizmo, Avoiding the infomercial, Understanding when humans do it better, Looking for the simple solution.

Seeing AI in Space: Observing the Universe, Seeing clearly for the first time, Finding new places to go, Considering the evolution of the universe, Creating new scientific principles, Performing Space Mining, Harvesting water, Obtaining rare earths and other metals, Finding new elements, Enhancing communication, Exploring New Places, Starting with the probe, Relying on robotic missions, Adding the human element, Building Structures in Space , Taking your first space vacation, Performing scientific investigation, Industrializing space, Using space for storage.

Adding New Human Occupations: Living and Working in Space, Creating Cities in Hostile Environments, Building cities in the ocean, Creating space-based habitats, Constructing moonbased resources, Making Humans More Efficient, Fixing Problems on a Planetary Scale, Contemplating how the world works, Locating potential sources of problems, Defining potential solutions, Seeing the effects of the solutions, Trying again.

Text Books:

 "Artificial Intelligence for Dummies" by John Paul Mueller and Luca Massaron, Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com, Copyright © 2018 by John Wiley & Sons, Inc., Hoboken, New Jersey, Published simultaneously in Canada.

Reference books:

- 1. "Artificial Intelligence for all", Utpal Chakraborthy, BPB Publications, Feb2020
- 2. "Artificial Intelligence", Dr. Praphat Kumar, BPB Publications, Jan2019
- 3. "The Quest for Artificial Intelligence: A History of Idea and Achievements", Nils J.Nilsson, Stanford University, Cambridge University Press, 2010.
- 4. "Artificial Intelligence: How 50 Sucessful Companies used Artificial Intelligence tosolve problems, Bernard Marr, Wiley Publications, 2019.

Course Outcomes:

CO 1. Demonstrate fundamental understanding of the history of artificial intelligence (AI) and its foundations

CO2. Demonstrate proficiency in usage of hardware and software platforms for AI based applications

CO 3. Demonstrate awareness and a fundamental understanding of various applications of AI techniques

CO 4. Demonstrate an ability to share in discussions of AI, its current scope and limitations, and societal implications.

Course Outcomes								PSO 1	PSO 2	PSO 3					
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	2	1	1										1	3	
CO2	1	3	3		3								1	3	3
CO3	1	2	2										1	3	1
CO4	1	1	1			1		1					1	3	2

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

21UAI305C	Problem Solving with Python	Credits:03
L:T:P:3:0:0		CIE Marks:50
Total Hours/Week: 40/03		SEE Marks:50

UNIT - I	10 Hrs					
Python Basics, Entering Expressions into the Interactive Shell, The Integer, Floating-Point, and						
String Data Types, String Concatenation and Replication, Storing Values in Variables, Your						
First Program, Dissecting Your Program, Flow control, Boolean Values, Comparison						
Operators, Boolean Operators, Mixing Boolean and Comparison Operators, Elements of Flow						
Control, Program Execution, Flow Control Statements, Importing Modules, Ending a Program						
Early with sys.exit(), Functions, def Statements with Parameters, Return Values and return						
Statements						
UNIT – II	10 Hrs					

The List Data Type: Getting Individual Values in a List with Indexes, Negative Indexes, Getting Sublists with Slices, Getting a List's Length with len(), Changing Values in a List with Indexes, List Concatenation and List Replication, Removing Values from Lists with del Statements. Working with Lists: Using for Loops with Lists, The in and not in Operators. Operations on tuples: indexing, slicing, concatenation, repeating. Functions on tuple: len(), count(). index(), sorted(),min(), max(), and sum(). Functions on set: add(). clear(),copy(),difference(),difference update(),discard(),intersection(),intersection update(),isdi sjoint(),issubset(),issuperset(),pop(),remove(),update(),union(). The Dictionary Data Type: Dictionaries vs. Lists, The keys(), values(), and items() Methods, Checking Whether a Key or Value Exists in a Dictionary, The get() Method, The setdefault() Method.

UNIT - III

10 Hrs

Operations on string. Useful String Methods: The upper(), lower(), isupper(), and islower() Methods, The isX() Methods ,The startswith() and endswith() Methods, The join() and split() Methods, Splitting Strings with the partition() Method, Justifying Text with the rjust(), ljust(), and center() Methods, Removing Whitespace with the strip(), rstrip(), and lstrip() Methods. Oops concepts: Object, Class, Method, Inheritance, Polymorphism, Data abstraction Encapsulation. Exception Handling.

UNIT - IV

10 Hrs

Reading and Writing Files: Files and File Paths, Backslash on Windows and Forward Slash on macOS and Linux, Using the / Operator to Join Paths, The Current Working Directory, The Home Directory, Absolute vs. Relative Paths, Creating New Folders Using the os.makedirs() Function, Handling Absolute and Relative Paths, Getting the Parts of a File Path, Finding File Sizes and Folder Contents, Modifying a List of Files Using Glob Patterns, Checking Path Validity, The File Reading/Writing Process, Opening Files with the open() Function, Reading the Contents of Files, Writing to Files. Working with CSV Files: The csv Module, reader Objects, Reading Data from reader Objects in a for Loop, writer Objects, The delimiter and lineterminator Keyword Arguments, DictReader and DictWriter CSV Objects.

Text Books:

- Al Sweigart, "Automate the Boring Stuff with Python", 2 nd Edition, No Starch Press, 2015. (Available under CC-BY-NC-SA license at https://automatetheboringstuff.com/) (Chapters 1 to 18)
- 2. Core Python Programming, R. Nageswara Rao, 2018, Dreamtech press

Reference books:

- 1. Programming with python, T R Padmanabhan, 2017, Springer.
- 2. Python for Data Analysis, Wes McKinney, 2012, O.Reilly.

e-Resources and other Digital Material:

- 1. http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/thinkcspy3.pdf
- 2. https://zhanxw.com/blog/wp-content/uploads/2013/03/BeautifulCode_2.pdf
- 3. https://www.w3schools.com/python/
- 4. Python Tutorial (tutorialspoint.com)

Course Outcomes:

- 1. Learn the syntax and semantics of Python programming language.
- 2. Illustrate the process of structuring the data using lists, tuples, sets, dictionaries and strings.
- 3. Implement the object oriented programming concepts in python
- 4. Demonstrate the use of built-in functions to navigate the file system.
- 5. Implement basic operations on PDF, JSON and other file formats

21UA313L	Data Structures Lab	Credits:01
L:T:P:0:0:2		CIE Marks:50
Total Hours/Week:40/03		SEE Marks:50

S. No.	Assignment
1.	Program on implementation of Stack using ADT
2.	Program on applications of stack using ADT
3.	Program on recursion
4.	Program on implementation of different types queues using ADT
5.	Program on developing stack and queue using linked list using ADT
6.	Program on implementing different operations on linked list using ADT
7.	Program on applications of linked lists using ADT
8.	Program on creation of BT and BST using ADT

Course Outcomes:

- 1. Design generic and reusable C code to implement ADT's for linear data structures like stack, queue, linked list and non linear data structures BT and BST and use the same to solve real time applications.
- **2.** Compile, debug and execute the above C codes and analyze the output for different test cases.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

21UAI314L	Python Programming Lab	Credits01
L:T:P:0:0:2		CIE Marks:50
Total Hours/Week:40/03		SEE Marks:50

Sl. No.	Assignment
1.	Implementation of Python fundamentals, data types, operators, flow control and exception handling in Python
2.	Demonstrating creation of functions, passing parameters and return values
3.	Demonstration of manipulation of strings using string methods
4.	Discuss different collections like list, tuple and dictionary
5.	Demonstration of pattern recognition with and without using regular expressions
6.	Demonstration of reading, writing and organizing files.
7.	Demonstration of the concepts of classes, methods, objects and inheritance
8.	Demonstration of classes and methods with polymorphism and overriding
9.	Demonstration of working with excel spreadsheets.
10.	Demonstration of working with PDF, word and JSON files

Course Outcomes:

CO 1. Demonstrate proficiency in handling of loops and creation of functions.

CO 2. Identify the methods to create and manipulate lists, tuples and dictionaries.

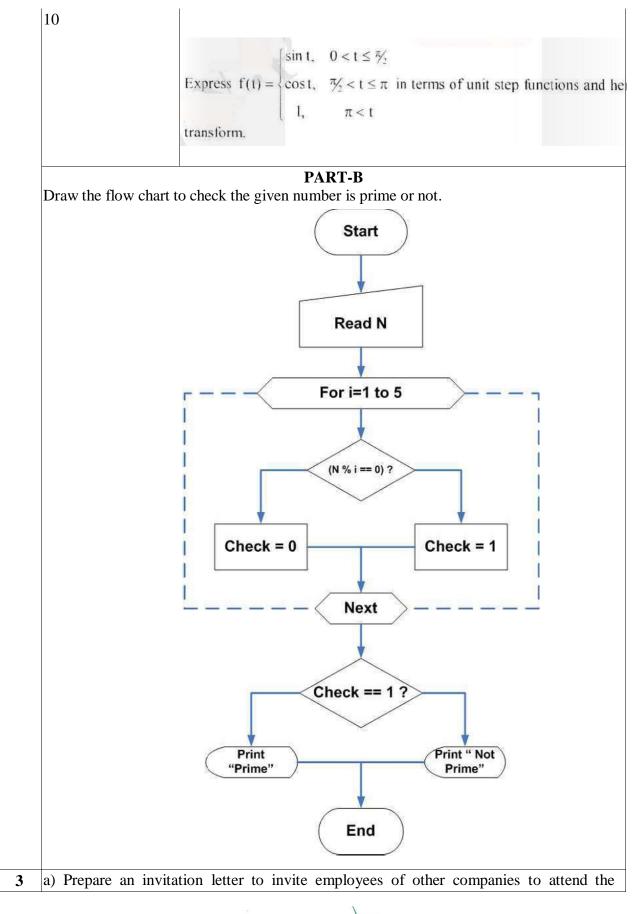
CO 3. Discover the commonly used operations involving regular expressions and file system.

CO 4. Interpret the concepts of Object-Oriented Programming as used in Python.

CO 5. Determine the need for scraping websites and working with PDF, JSON and other file formats.

21UAI315L	Working with Office	Credits:01
L:T:P:1:0:0		CIE Marks:50
Total Hours/Week:40/03		SEE Marks:50

List of Laboratory Assignments


Sl.No	Assignment
1	Assignment Prepare an MS word document with the following specifications. MS-WORD Microsoft Word is a word processor developed by Microsoft. It was first released in 1983 under the name Multi-Tool Word for Xenix systems. MS Word is a popular word-processing program used primarily for creating documents such as letters, brochures, learning activities, tests, quizzes and students' homework assignments. There are many simple but useful features available in Microsoft Word to make it easier for study and work. That's why so many people would prefer to convert the read-only PDF to editable Word and edit PDF in Word. i i Type the paragraph above as it is using "Calibri font", font size 12. ii Use margins as, top:1.5, bottom:2, left:2, right:1 inches, set paper size:A4. iii Use heading "MS-WORD", font size: 16, font color: Magenta, font face: Arial Black. Underline the "MS-WORD" using underline option. iv With first letter "dropped" (use drop cap option) set paragraph spacing 1.5. Insert a text box and move the whole paragraph into the text box. Align paragraph content justify. Apply background color. vi Use three columns from the second paragraph onwards till the 2/3rd of the page. Add contents related to MS word with relevant headings. vii In the remaining part of the document, create a table using table menu with, a) At least 4 columns and 6 rows. b) Perform cell merging in row and columns. c) Use proper table border and color.
2	xv Add hyperlink to access other documents Prepare an MS Word document to demonstrate inserting mathematical equations such as
	follows. PART-A ENGINEERING MATHEMATICS

June

1With usual notation, prove that for the curve
$$r = f(\theta)$$
, $\frac{1}{p^2}$:2Using Maclaurin's series, prove that
 $\sqrt{1 + \sin 2x} = 1 + x - x^2/2! - x^3/3! + x^4/4!$ 3Evaluate: i) $\lim_{x \to 0} \left(\frac{\tan x}{x}\right)^{1/x}$ ii) $\lim_{x \to 0} \left(\frac{a^x + b^x}{2}\right)^{1/x}$ 4Evaluate: $\int_{-c-b-a}^{b} \int_{a}^{b} (x^2 + y^2 + z^2) dz dy dx$ 5Show that $\beta(m, n) = \frac{\left[m \quad n\right]}{\left[m + n\right]}$ 6Prove that $\int_{0}^{\pi/2} \sqrt{\sin \theta} d\theta + \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} = \pi$ 7Find the rank of the matrix $\begin{bmatrix} 2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ by applying elementa8If $u = \csc^{-1}\left(\frac{x^{\frac{1/2}{2}} + y^{\frac{1/2}{2}}}{x^{\frac{1/3}{3}} + y^{\frac{1/3}{3}}}\right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -\frac{1}{6} \tan 1$ 9Prove that $div(\phi \vec{A}) = \phi(div \vec{A}) + grad \phi, \vec{A}$.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

July

Principal, Basaveshwar Engineering College, BAGALKOT-587–102,

		word to	select the names and other information	-			
4	 b) Prepare a macro to create letter template of the problem defined in (a). Prepare an excel sheet to compute the correlation coefficient 'r'between two variables for the following dataset. Also compare the results with the builtin function =CORREL()and =PEARSON()available in MS Excel. Also draw the line chart Number of Hours versus CGPA demonstrating the correlation. 						
5		Prepare a payroll for the following list of faculty using MS Excel. 1.1 List of Faculty					
		Sl. No	Faculty Name	Designation			
		1	Ram Mohan Reddy	Professor			
		2	Anand Kumar M	Professor			
		3	Pijush M	Professor			
		4	Bhavana Kiran	Associate Professor			
		5	Dinesh Naik	Associate Professor			
		6	Soumaya Kamath S	Associate Professor			
		7	H S Nagendra Swami	Assistant Professor			
		8	Hamsaveni B N	Assistant Professor			
		9	Vijaykumar S	Assistant Professor			
		10	Praveenkumar C	Assistant Professor			
	1.2 Basi	c salary	rate details				
		-	excel payroll calculation will contain t	he employee's salary			
	•First col	lumn incl	ludes cell of Pay days in that month.				
			nust have the Basic Salary details of t	1 2			
	,		essor: Rs. 57700-68900 with AGP of I				
			ssor: Rs.79800-144200, with AGP of 44200 -182200, with AGP of Rs.1000				
			ess Allowance (DA) with 38%.)()			
			Rent Allowance (HRA) 16%.				
	•Total Sa						
			ary details				
	•Deducti						
	•Net sala						
6	Case Scenar	io: Head	bivot table for the following case study lquartered in Memphis, TN, Grenad	dier Super Store (GSS)			
	specializes in	office s	upplies and furniture. The company'	s customers range from			

June

	individual consumers and small businesses (retail), to corporate organizations						
	· · · · ·	the United States and Ca	nada.				
	Project Requirement	ts: xcel Format) sales_data .:	view given to you				
		n the starting data fil	0.	PivotTables and			
		be used to answer the f					
		Regional Sales by Pro	duct Category a	nd Product Sub-			
	Category?	· (T) 1 · T) (1	0 1 1 1 1	1			
		ivotTable showing Total act Sub-Category. Use					
	-	Sales figure included in t	his data set?				
		egory had the highest sale					
	iii. Which Region had						
		al Sales of Appliances in O	Ontario?				
		valuable customers?	~				
	with GSS during 1-6	PivotTable showing the -2014 to 30-6-2015. For s, Total Sales, and Total	each customer, p	lease also show the			
		e information specifical					
		PivotTable to answer the	•	-			
		votTable to locate the ans	01	`			
	i. Which Small Busin	ess customer had the high	est sales?				
		ustomer placed the most		n 2015-2016? How			
	• •	ced by the Corporate cust					
		customer was the most pr					
		igure of the least profitable		stomer?			
7	Creating and Querying Da		S.				
	This lab requires the follow	ew databases, tables, and :	rolationships				
	2. Add data to		relationships				
		e queries using Query Bui	lder				
8	Prepare an MS Access file t						
0		Il create a databasethat inc					
	andqueries.			,p,			
	Assignment Instructions:						
	1. Create a New blank	database					
		le as your last name in all	l lowercase letters.	(For example, can			
	would save your file						
	-	ate a table using the struc	ture shown below:				
	1. Name the table: Student List						
	xv.2 Set the "USN" field as the Primary Keyxv.3 AdmQuota= K for KEA, C for ComedK, M for Management						
	xv.3 AdmQuota=		in, in the intellage	nent			
	FieldName	DataType	FieldSize	Otherfieldpropert			
	USN (PrimaryKey)	ShortText	10				
	First Name	ShortText	Default				

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

hur

Last Name	ShortText	Default	
Branch	ShortText	Default	
Year	Date/Time	Default	
Address	ShortText	Default	
City	ShortText	Default	
State	ShortText	Default	
ZipCode	ShortText	6	
AdmQuota	ShortText	1	
FeesBalance	Currency	Default	

1. In Datasheet View, add the data below to the "StudentList" table.

2. Create a form using the Form Wizard based on the "StudentList" table

•Use All Fields

•Layout: Columnar

•Form Name: StudentForm

6. In Design View, change the Theme to "Executive"

7. Addthe following records using the Form:

8. Whenyouhavefinishedaddingthe records, save the formas "StudentForm"

9. Using the Report Wizard, create a report based on the "StudentList" table, according to the following specifications:

a. Use All Fields

b. Group by: First Term Attended

c. Layout: Stepped

d. Orientation: Landscape

e. Title the report: Student Report

f. Adjust column widths in Design View as necessary

10. Create Queries

Query 1: Create a query from the "StudentList" table using the Simple Query Wizard. The query is as follows:

i. Generate a report with the USN and names of the students who taken admission under KEA

ii. Select the appropriate fields and the appropriate criteria. Run this query.

Query 2: Create a query from the "StudentList" table using the Simple Query Wizard. The query is as follows:

i. Generate a report with the USN and names of the students whose FeeBalance is more than 50,000 Rs.

ii. Select the appropriate fields and the appropriate criteria. Run this query.

Prepare an MS Access file to create and query the database using advanc d queries. 9 Create database with following tables: 1) bktblPublishers 2) bktblAuthors 3) bktblTitles bktblPublishers attributes oktbillitles." bktblTitles.* PublishersID TitlesID title_id title_name type pages price sales pubdate contract advance. royalty_rate Answer the following queries:

Exercise 3

Create a new query that shows all the information in the bktblAuthors and bktblTitles tables.

Exercise 4

Create a new query that displays title ID, title name, the publisher's name, and the author's first and names.

Exercise 5

Modify the query that you created in Exercise 4 so that it only shows records corresponding to Ab Publishers. Only show Abatis Publishers records with royalty rates less than 0.08 or with advances t are less than 30000. Do not show the advance and royalty rates fields in the query.

Exercise 1

The expression we created for profit is too simplified. Modify it so that the profit is calculate ((sales*price)-advance) * (1-royalty rate).

Exercise 2

In Query 3, remove the au_fname and au_Iname fields from the query. Create a new field called Name that combines both names (with a space between them). Use the & operator.

10	1. Prepare the MS Powerpoint slides (Minimum 6 slides) which demonstrates use of
	hyperlinks, Inserting images, clip art, audio video, Tables and charts.
	2. Create master layouts (slide, template and notes), inserting: background, textures,
	design templates, Hidden slides.
	3. Use auto content wizard, slide transition, custom animation, rehearsing.

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

June

21UAI402C	Analysis & Design of Algorithms (I)	Credits:04
L:T:P:3:0:2		CIE Marks:50
Total Hours/Week: 40/03		SEE Marks:50

UNIT-I	10 + 6 Hrs
Introduction: Notion of Algorithm, Fundamentals of Algorithmic Problem Solv	ving, Important
Problem Types, Fundamental Data Structures.	
Fundamentals of the Analysis of Algorithm Efficiency: Analysis Framewor	
Notations and Basic Efficiency Classes, Mathematical Analysis of Non-recursive	and Recursive
Algorithms, Example – Fibonacci Numbers.	
Brute Force: Selection Sort and Bubble Sort, Sequential Search and Brute-Force St	ring Matching,
Exhaustive Search.	I
UNIT-II	10 + 6 Hrs
Divide and Conquer: Mergesort, Quicksort, Binary Search, Binary Tree Tr Related Properties, Multiplication of Large Integers and Strassen's Matrix Multiplication Decrease and Conquer: Insertion Sort, Depth First Search, Breadth First Search, Sorting, Algorithms for Generating Combinatorial Objects.	n.
UNIT-III	10 + 6 Hrs
Transform and Conquer: Presorting, Balanced Search Trees, Heaps and Heaps	ort, Problem
Reduction.	
Space and Time Tradeoffs: Sorting by Counting, Input Enhancement in Strin	ng Matching,
Hashing, B-Trees.	
Dynamic Programming: Computing a Binomial Coefficient, Warshall's	2
Algorithms, Optimal Binary Search Trees. The Knapsack Problem and Memory Function	
UNIT-IV	10 + 6 Hrs
Greedy Technique: Prim's Algorithm, Kruskal's Algorithm, Dijkstra's Algorithm, Hut	ffman Trees
Limitations of Algorithm Power: Lower-Bound Arguments, Decision Trees, Problems the Limitations of Algorithm Power: Backtracking, Branch-and-Bound.	
the Limitations of Algorithm Power: Backtracking, Branch-and-Bound.	
the Limitations of Algorithm Power: Backtracking, Branch-and-Bound. Reference Books Reference books:	
the Limitations of Algorithm Power: Backtracking, Branch-and-Bound. Reference Books: 1. "Introduction to Algorithms", Stein, PHI, 2 nd Edition,	Coping with
the Limitations of Algorithm Power: Backtracking, Branch-and-Bound. Reference Books Reference books:	Coping with
the Limitations of Algorithm Power: Backtracking, Branch-and-Bound. Reference Books: 1. "Introduction to Algorithms", Stein, PHI, 2 nd Edition, 2. "Computer Algorithms", Horowitz E., Sahni S., Rajasekaran S., Galgotia Publica	Coping with
the Limitations of Algorithm Power: Backtracking, Branch-and-Bound. Reference Books: 1. "Introduction to Algorithms", Stein, PHI, 2 nd Edition, 2. "Computer Algorithms", Horowitz E., Sahni S., Rajasekaran S., Galgotia Publica Text Books: 1. "Introduction to The Design & Analysis of Algorithms", Anany Levitin,	Coping with
 the Limitations of Algorithm Power: Backtracking, Branch-and-Bound. Reference Books: "Introduction to Algorithms", Stein, PHI, 2nd Edition, "Computer Algorithms", Horowitz E., Sahni S., Rajasekaran S., Galgotia Publica Text Books: "Introduction to The Design & Analysis of Algorithms", Anany Levitin, Education, 3rd Edition, 2017 	Coping with
 the Limitations of Algorithm Power: Backtracking, Branch-and-Bound. Reference Books: "Introduction to Algorithms", Stein, PHI, 2nd Edition, "Computer Algorithms", Horowitz E., Sahni S., Rajasekaran S., Galgotia Publica Text Books: "Introduction to The Design & Analysis of Algorithms", Anany Levitin, Education, 3rd Edition, 2017 	Coping with ations, 2001 Pearson
 the Limitations of Algorithm Power: Backtracking, Branch-and-Bound. Reference Books: "Introduction to Algorithms", Stein, PHI, 2nd Edition, "Computer Algorithms", Horowitz E., Sahni S., Rajasekaran S., Galgotia Publica Text Books: "Introduction to The Design & Analysis of Algorithms", Anany Levitin, Education, 3rd Edition, 2017 Course Outcomes After completion of the course student will be able to 	Coping with ations, 2001 Pearson

3) Understand the algorithm design techniques using divide and conquer approach.4) Understand the algorithm design techniques using dynamic programming and greedy approaches.

5) Explain the algorithm design techniques using backtracking, branch & bound, NP-complete and NP-hard problems.

ANALYSIS AND DESIGN OF ALGORITHMS LAB ASSIGNMENTS

1) a) Write a C program to search a given element using binary search method and determine its time complexity.

b) Write a C program to sort a given set of numbers using the quick sort method and determine its time complexity.

2) Write a C program to sort a given set of numbers using the merge sort method and determine its time complexity.

3) Write a C program to check whether a given graph is connected or not using DFS method and determine its time complexity.

4) Write a C program to print all the nodes reachable from a given starting node in a digraph using BFS method and determine its time complexity.

5) Write a C program to sort a given set of numbers using the heap sort method and determine its time complexity.

6) a) Write a C program to find the Transitive Closure of a graph using Warshall's algorithm.

b) Write a C program to find all pair shortest path of a graph using Floyd's algorithm.

7) Write a C program to implement 0/1 Knapsack problem using Dynamic Programming and determine its time complexity.

8) Write a C program to find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm and determine its time complexity.

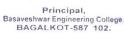
9) Write a C program to find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm and determine its time complexity.

10) Write a C program to find the shortest path from a given vertex to other vertices in a weighted connected graph using Dijkstra's algorithm and determine its time complexity

21UAI403C	Operating Systems	Credits:03
L:T:P:3:0:2		CIE Marks:50
Total Hours/Week: 40/03		SEE Marks:50

UNIT-I	10 Hrs
Introduction to operating systems, types and services.	
Role of Operating systems: user view, system view; Operating System structure;	Operating
System operations; Operating System Services; User - Operating System interface; Sy	stem calls;
Types of system calls; System programs; Operating System design and implementation;	; Operating
System structure; Virtual machines.	
Process management: Process concept; Concepts of process: Process status	, Process
description, Process model, Operations on processes.	
UNIT-II	10 Hrs
Process management, threads and process synchronization.	
 Process Scheduling: Basic concepts; scheduling criteria; Scheduling algorithms; Processor scheduling, Inter-process communication (Intd.), Threads: concepts, Multi Threaded Programming: Overview; Multithreading models; Synchronization: The Critical section problem; Peterson's solution; Synchronization; Andware; Semaphores; Classical problems of synchronization; Monitors. 	-
UNIT-III	10 Hrs
Deadlocks and memory management: Deadlocks: Deadlocks: System model; characterization; Methods for handling deadlocks; Deadlock prevention; Deadlock Deadlock detection and recovery from deadlock Memory Management Strategies: Background; Swapping; Contiguous memory Paging; Structure of page table; Segmentation.	avoidance;
UNIT–IV	10 Hrs
Virtual Memory Management: Background; Demand paging; Page replacement; Al frames.File system: concepts and implementation, secondary storage structures. File System: File concept; Access methods; Directory structure; File system mou sharing; Implementing File System: File system structure; File system imple Directory implementation; Allocation methods; Free space management.	nting; File
Reference Books	
 D.M Dhamdhere: Operating systems - A concept based Approach, 2nd Edition, Tat McGraw- Hill, 2002. 	a
Text Books:	
1) Abraham Silberschatz, Peter Baer Galvin , Greg Gagne: Operating System 7 th Addison Wesley	edition,
Course Outcomes	
After completion of the course student will be able to	
 Explain the core structure and different services provided by Operating S different levels Apply the concepts of process scheduling algorithms and synchronization tech solving real time problems 	-
 Exhibit the knowledge of memory management techniques Exhibit the knowledge of secondary storage management techniques and solutions 	security

hur


21UAI404C	Introduction to Data Science	Credits:03
L:T:P:3:0:0		CIE Marks:50
Total Hours/Week: 40/03		SEE Marks:50

UNIT-I	10 Hrs
Introduction: Data Science. Applications of data science. Data science related to Relationship between data science and Information science. Computational thinking. S science. Tools for data science. Issues of Ethics, Bias, and Privacy in Data Science.	
Data: Introduction, Data types : Structured Data, Unstructured Data, Challenges with Data. Data Collections : Open Data, Social Media Data, Multimodal Data, Data	
Presentation.	
Data Pre-processing : Data Cleaning, Data Integration, Data Transformation, Data Data Discretization.	Reduction,
UNIT–II	10 Hrs
Techniques: Introduction, Data Analysis and Data Analytics, Descriptive Variables, frequency Distribution, Measures of Centrality, Dispersion of a Distribution Diagnostic Analytics: Correlations, Predictive Analytics, Prescriptive Analytics, E Analysis, Mechanistic Analysis: Regression Tools for data science: Introductio Access to R, Getting Started with R: Basics, Control Structures, Functions, Importing Graphics and Data Visualization: Installing ggplot2, Loading the Data, Plotting Statistics and Machine Learning: Basic Statistics, Regression.	Exploratory n, Getting g Data
UNIT-III	10 Hrs
Machine learning for data science: Machine Learning Introduction and	
Introduction, Machine Learning, Regression, Gradient Descent. Supervised Lear classification Unsupervised learning: K means Clustering, Introduction to Reflect Learning.	0
UNIT-IV	10 Hrs
 Applications, Evaluation, and Methods: Hands-On with Solving Data Problems: Collecting and Analyzing Twitter Data, Collecting and Analyzing YouTube Data Yelp Reviews and Ratings. Data Collection, Experimentation, and Evaluation: Data Collection Methods: Survival 	
Question Types, Survey Audience, Survey Services, Analyzing Survey Data, Pros a Surveys, Interviews and Focus Groups, Why Do an Interview? Why Focus Groups? Focus Group Procedure, Analyzing Interview Data, Pros and Cons of Interviews Groups, Log and Diary Data, User Studies in Lab and Field, Picking Data Col Analysis Methods: Introduction to Quantitative Methods, Introduction to Qualitative Mixed Method Studies. Evaluation: Comparing Models, Training– Testing and A Cross-Validation.	and Cons of Interview or and Focus lection and we Methods,
Surveys, Interviews and Focus Groups, Why Do an Interview? Why Focus Groups? Focus Group Procedure, Analyzing Interview Data, Pros and Cons of Interviews Groups, Log and Diary Data, User Studies in Lab and Field, Picking Data Col Analysis Methods: Introduction to Quantitative Methods, Introduction to Qualitative Mixed Method Studies. Evaluation: Comparing Models, Training– Testing and A	and Cons of Interview or and Focus lection and we Methods,
Surveys, Interviews and Focus Groups, Why Do an Interview? Why Focus Groups? Focus Group Procedure, Analyzing Interview Data, Pros and Cons of Interviews Groups, Log and Diary Data, User Studies in Lab and Field, Picking Data Col Analysis Methods: Introduction to Quantitative Methods, Introduction to Qualitative Mixed Method Studies. Evaluation: Comparing Models, Training– Testing and A Cross-Validation.	and Cons of Interview or and Focus lection and we Methods, A/B Testing,
 Surveys, Interviews and Focus Groups, Why Do an Interview? Why Focus Groups? Focus Group Procedure, Analyzing Interview Data , Pros and Cons of Interviews Groups, Log and Diary Data, User Studies in Lab and Field, Picking Data Col Analysis Methods: Introduction to Quantitative Methods, Introduction to Qualitative Method Studies. Evaluation: Comparing Models, Training– Testing and A Cross-Validation. Reference Books "Data Science from Scratch", Joel Grus, O'Rielly Publications, 2015. "Introduction to Data Science", Laura Igual and Santi Segui, Springer Internation 	and Cons of Interview or and Focus lection and ve Methods, A/B Testing, al Publica-

June

Course Outcomes: At the end of the course the students should be able to:

- 1. Identify and asses the needs of an organization for data science task
- 2. Collect, manage and use data to examine, analyse and interpret data
- 3. Apply statistical and ML algorithms to effectively generate useful information from structural and un structured data
- 4. Design, build and evaluate models that can be used to make predictions in real world phenomena
- 5. Communicate data science related information effectively in various formats to appropriate audience

21UAI416L	Data Science Lab	Credits:03
L:T:P:3:0:0		CIE Marks:50
Total Hours/Week: 40/03		SEE Marks:50

A. NO.	Assignment
1	Programs on data collection and reading data
2	Programs on data pre processing methods (EDA)
3	Programs on descriptive, diagnostic and predictive analysis.(EDA)
4	Programs on visualization tools (EDA)
5	Program on LR with GD (ML model and its evaluation)
6	Program on KNN classification (ML model and its evaluation)
7	Program on Kmeans clustering (ML model and its evaluation)
8	Program on end to end data science life cycle (case study) on real time data sets

June

Basveshwar Engineering College, Bagalkote

Department of Automobile Engineering

Scheme of Teaching and Evaluation (Academic Year 2020 - 2021)

III Semester BE

Sl.	Subject	Subject Title	Credits	Но	urs/ W	eek	Examination Marks			
No			Cleuits	L	Т	Р	CIE	SEE	Total	
1	UMA333C	Computational Methods for Mechanical Science	3	3	0	0	50	50	100	
2	UAU312C	Thermodynamics	4	3	2	0	50	50	100	
3	UAU313C	Production Technology	3	3	0	0	50	50	100	
4	UAU314C	Mechanics of Materials	4	3	2	0	50	50	100	
5	UAU325C	Automotive Chassis	3	3	0	0	50	50	100	
6	UAU306C	Material Science and Metallurgy	3	3	0	0	50	50	100	
7	UAU317L	Computer Aided Machine Drawing	1	0	0	2	50	50	100	
8	UAU328L	Machine Shop Practice	1	0	0	2	50	50	100	
	UHS388C	Samskruthika Kannada#								
9		OR	1	2	0	0	50	50	100	
	UHS389C	Balake Kannada ^{\$}								
10	UMA330M	Bridge Course Mathematics - I*		3	0	0	50	50	100	
11	UBT133M	Environmental Studies*		2	0	0	50	50	100	
		Total	23	20/ 25*	04	04	450/ 550*	450/ 550*	900/ 1100*	

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Basveshwar Engineering College, Bagalkote

Department of Automobile Engineering

Scheme of Teaching and Evaluation (Academic Year 2020 - 2021)

IV Semester BE

Sl.	Subject	Subject Title	Credits	Ho	urs/ W	eek	Examination Marks			
No	No Code	Subject Thie	Creuits	L	Т	Р	CIE	SEE	Total	
1.	UMA433C	Statistical Methods for Mechanical Science	3	3	0	0	50	50	100	
2.	UAU412C	Fluid Mechanics	3	3	0	0	50	50	100	
3.	UAU433C	Theory of Machines	4	3	2	0	50	50	100	
4.	UAU424C	Design of Machine Elements – I	4	3	2	0	50	50	100	
5.	UAU415C	Theory of Automotive Engines	3	3	0	0	50	50	100	
6.	UAU416C	Automotive Transmission Systems	3	3	0	0	50	50	100	
7.	UHS001N	Fundamentals of Quantitative Aptitude and Soft Skills	1	1	0	0	50	50	100	
8.	UAU437L	Foundry and Forging Practice	1	0	0	2	50	50	100	
9.	UAU438L	IC Engine and Fuels Laboratory	1	0	0	2	50	50	100	
10.	UAU439L	Material Testing and Measurement Laboratory	1	0	0	2	50	50	100	
11.	UMA430M	Bridge course Mathematics – II*		3	0	0	50	50	100	
12.	UHS226M	Constitution of India*		2	0	0	50	50	100	
	1	Total	24	19/	04	06	500/	500/	1000/	
				24*			600*	600*	1200*	

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

L:T:P - N_L :3 N_T:0 N_P 0 Total Hours/Week: 03

COMPUTATIONAL METHODS FOR MECHANICAL SCIENCE

SEE Marks: 50

	UNIT-I	10 Hrs.
Introdu differei interpo	ical analysis – I: ction to find root finding problems, Newton-Raphson method. Finite differences, forward a new operators (no derivations on relations between operators) Newton-Gregory forward a lation formulae (without proof).Lagrange's and Newton's divided difference interpolat at proof) Numerical differentiation using Newton's forward and backward formulae-problems	nd backward ion formulae 3.
	UNIT–II	10 Hrs.
Nume proble metho	rical analysis-II: rical Integration: Simpson's one third rule, Simpson's three eighth rule (no derivation of an ems. Numerical solution of ODE and PDE: Euler's and Modified Euler's method, Runge-Ku d, Numerical solutions of one-dimensional heat and wave equations by explicit meth on by using five point formula.	utta 4 th order
	UNIT–III	10Hrs.
Period function	r series: lic functions, Conditions for Fourier series expansions, Fourier series expansion of cor ons having finite number of discontinuities, even and odd func series, practical harmonic analysis.	atinuous and ctions. Half-
	UNIT–IV	10Hrs.
transfor Calcul Variat standa	Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and F rms. us of Variations: ion of a function and a functional, external of a functional, variational problems, Euler and variational problems including geodesics, minimal surface of revolution, hanging istochrone problems.	r's equation,
Refere	nce Books *	
	 Numerical Methods for Engineers by Steven C Chapra & Raymond P Canale. Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers, New Delhi Advanced Engineering Mathematics By H. K. Das, S. Chand & company Ltd. Ram Delhi. Advanced Engineering Mathematics by E Kreyszig (John Wiley & Sons) 	
Course	e Outcomes**	
After c CO1: CO2: CO3: CO4: CO5:	 completion of the course student will be able to To know how root finding techniques can be used to solve practical engineering problems. To apply the concept of finding approximate value of the derivative & definite integral for a given data using numerical techniques. To apply numerical techniques to solve the first order first degree ordinary differential equations. To apply partial differential techniques to solve the physical engineering problems. To implement integration technique to determine the extreme values of a functional. 	

UAU306C
L:T:P - N_L :3 N_T :0 N_P :0
Total Hours/Week: 03

MATERIAL SCIENCE AND METALLURGY

Credits: 03
CIE Marks: 50
SEE Marks: 50

UNIT-I	10 Hrs.
CRYSTAL STRUCTURE: Fundamental concepts of unit cell space lattice, Bravais space lattices	, unit cells for
cubic structure and HCP, crystallographic planes and directions, Miller indices, calculatio	
coordination number and atomic packing factor for different cubic structures. Crystal imperfection	ns; point, line,
surface and volume defects. Diffusion; diffusion mechanism, Fick's laws of diffusion.	- f
MECHANICAL BEHAVIOR: Stress-strain diagram to show ductile and brittle behavior	
mechanism of elastic action, linear and nonlinear elastic properties, true stress and strain. Plastic	deformation,
dislocation, slips and twinning, fracture-types, stages in cup and cone, Griffith's criterion	10.11
UNIT-II	10 Hrs.
 FATIGUE: Stress cycles, effects of stress concentration, size effect, surface texture on fatigue factors affecting fatigue life and protection methods. CREEP: Creep curves, mechanisms of creep. Creep-resistant materials. SOLIDIFICATION AND PHASE DIAGRAMS: Mechanism of solidification, homog heterogeneous nucleation, crystal growth, cast metal structures. Solid solutions – types, rules g 	eneous and
formation of solids solutions. Phase diagrams: basic terms, Gibb's phase rule, construction of pha	-
interpretation of equilibrium diagrams, types of phase diagrams. Lever rule.	ise diagrams,
UNIT-III	10 Hrs.
IRON CARBON EQUILIBRIUM DIAGRAM: Phases in the Fe-C system, invariant read	
HEAT TREATMENT OF STEEL : Definition and aims of heat treatment, annealing ar normalizing, hardening, tempering, martempering, austempering, surface hardening like cas carburizing, cyaniding, nitriding, induction hardening, hardenability, Jominy end-quench test.	
UNIT-IV	10 Hrs.
ENGINEERING ALLOYS: Properties, composition and uses of low, medium and high carbo designation and AISI – SAE designation. Cast irons, gray CI, white CI, malleable CI, SC iron. M of cast iron. Light alloys, Al, Mg and Titanium alloys. Copper and its alloys. Brasses and bronzes. COMPOSITE MATERIALS: Definition, classification, types of matrix materials and rei fundamentals of production of FRP's, production of MMC's, advantages and applications of composition.	licrostructures
Reference Books *	
 Text books: Smith, Foundations of material science and engineering-5th edition,McGraw Hill,2009 IS 10:0073529249 ISBN-13:978-0073529240 Murthy, Structure and properties of engineering materials, TATA McGraw Hill,2003, I 007048287X9780070482876 	
Reference Books:	
1. William D.Callister Jr. "Materials Science & Engineering- An Introduction" Wiley India Pr	vt. Ltd, New
 Delhi,2010 ISBN:9788126521432,8126521430 Donald R. Askland, Pradeep P.Phule Thomson, Essentials of Materials For Science And Er Engineering, 2007 	gineering",

James F. Shackel Ford, "Introduction to Material Science for Engineering", 8th edition Pearson,Prentice Hall, New Jersey, 2015

Course Outcomes**

- 1. Discuss the concept of crystal structure, crystal imperfections, and laws governing the diffusion phenomena and apply the knowledge to solve simple problems
- 2. Analyze the mechanical behavior of materials for various loads(steady and dynamic), fatigue tests and mechanism of creep and various modes of failure and apply the knowledge to solve problems
- 3. Explain the basic terminologies involved in metallurgy, Construct and interpret different types of phase diagrams, Iron-carbon equilibrium diagram, TTT diagram and apply the knowledge to solve problems
- 4. Apply the heat treatment process knowledge for improving physical and mechanical properties of different types of engineering materials
- 5. Discuss composite manufacturing processes and list advantages and applications of engineering and composite materials.
- 6. Discuss the concept of crystal structure, crystal imperfections, and laws governing the diffusion phenomena and apply the knowledge to solve simple problems

Course Outcomes				Pro	Program Specific Outcomes (PSOs)										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	1	1								1	2	2	3
CO2	3	3	3	2		1	1					3	2	2	3
CO3	3	1	1	3								1	1	2	3
CO4	3	2	1	1								1	2	2	3
CO5	3	2	1	1		1						1	2	2	3
CO6	3	3	1	1								1	2	2	3

UAU312C		Credits: 04
L:T:P - N _L :3 N _T :2 N _P :0	THERMODYNAMICS	CIE Marks: 50
Total Hours/Week: 05		SEE Marks: 50

UNIT-I

FUNDAMENTAL CONCEPTS AND DEFINITIONS: Thermodynamics; definition and scope. Microscopic and macroscopic approaches, some practical applications of engineering thermodynamic. Types of system, control volume and characteristics of system boundary and examples. Thermodynamic properties; Types of properties, intensive and extensive properties. Thermodynamic state, state point, state diagram, path and process, quasi-static process, cyclic and non-cyclic processes; thermodynamic equilibrium; definition, mechanical equilibrium, thermal equilibrium, chemical equilibrium, dithermic wall, Zeroth's law of thermodynamics, temperature; concepts, scales, measurement.

WORK AND HEAT: Mechanics definition of work and its limitations. Thermo dynamic definition of work with examples and sign convention. Displacement work; expressions for displacement work in various processes through PV diagrams. Shaft work; electrical work. Other types of work. Heat; definition, units and sign convention and 4numerical.

UNIT-II

18 Hrs.

14 Hrs.

FIRST LAW OF THERMODYNAMICS: Joule's experiments, equivalence of heat and work. Statement of the first law of thermodynamics, extension of the first law to non – cyclic processes, energy, energy as a property, modes of energy, specific heat at constant volume, enthalpy, specific heat at constant pressure. Steady flow energy equation with 4numerical.

SECOND LAW OF THERMODYNAMICS: Heat reservoir, heat source and sink, heat engines, heat pump, refrigerator and COP. Kelvin – Planck and Clausius's statement of second law of thermodynamics; equivalence of the two statements and 4numerical. PMM – I and PMM – II. Reversible and irreversible processes; factors that make a process irreversible and Carnot cycle.

UNIT-III

18 Hrs.

ENTROPY: Entropy – Clasius's inequality, statement, proof, application to a reversible cycle. QR/T as independent path. Entropy; definition, a property, principle of increase of entropy, entropy as a quantitative test for irreversibility, calculation of entropy using Tds relations.

GAS POWER CYCLES: Air-standard cycles; Carnot, Otto, Diesel, dual and Stirling cycles, P-V and T-S diagrams, definition, efficiencies and mean effective pressure. Comparison of Otto and Diesel cycle.

UNIT-IV16 Hrs.VAPOR POWER CYCLES: Carnot vapor power cycle, drawbacks as a reference cycle. Simple Rankine
cycle; description, T – S diagram, analysis for performance. Comparison of Carnot and Rankine cycles. Effects
of pressure and temperature on Rankine cycle performance. Actual vapor power cycles. Basic air conditioning
system; air conditioning principles, air-conditioning types, temperature and pressure fundamentals, types of
compressors and refrigerants.

Reference Books *

Text books

1."Basic and Applied Thermodynamics" by P.K. Nag, Tata McGraw Hill, 5th Edi. 2012

2. "Thermodynamics an engineering approach", by Yunus A. Cenegal

Reference Books:

- 1. Spalding and Cole, Engineering Thermodynamics, ELBS Edition Longmans, 1997.
- 2. Engineering Thermodynamics by J.B. Jones and G.A.Hawkins, John Wiley and Sons.

3. Arora C.P. Thermodynamics, TMH, 1998.

 Gordan J. Van Wylen and Richard E.Sountag, Fundamentals of Classical Thermodynamics, 4th Edition, Wiley, 1994.

Course Outcomes**

- 1. Define, state, classifications, and concepts of fundamentals of thermodynamic nomenclature.
- 2. Apply the knowledge to analyze and derive the thermodynamics equations.
- 3. Discuss and analyze laws of thermodynamics and to solve the problems.
- 4. Evaluate the various thermodynamics gas cycles and to solve the problems
- 5. Analyze the various thermodynamics vapour cycles and to solve the problems
- 6. Builds the foundation for preparing students to work in the area of thermal systems

Course Outcomes	Programme Outcomes (POs)												Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	1	1	2								1	1	2	2		
CO2	3	3	1	3					1			1	1	2	2		
CO3	3	3	2	1		2						1	1	1	2		
CO4	3	3	2	3					2			1	1	2	2		
CO5	3	2	1	2					2			1	1	1	2		
CO6	3	3	1	2	1	2	2		2	2	1	1	1	2	2		

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

UAU313C						
L:T:P - NL:3 NT:0 NP:	0					

PRODUCTION TECHNOLOGY

Credits: 03

CIE Marks: 50

SEE Marks: 50

Total Hours/Week: 03

	UNIT-I	10 Hrs.					
	JCTION: Concept of manufacturing process, its importance. Classification of m	anufacturing					
CUTTING carbides ar THEORY cutting, me	Advantages and limitations. TOOL MATERIALS: Desired properties, types of cutting tool materials – HSS car ad ceramics, cutting fluids, types and selection. Machinability, factors affecting machinab OF METAL CUTTING: Single point cutting tool nomenclature, geometry, orthogonal chanism of chip formation, types of chips.	ility. l and oblique					
TURNING	Classification, constructional features of Turret and Capstan lathe, tool layout. Machini	-					
	UNIT–II	10 Hrs.					
shaping an DRILLIN operations, features, m	 AND PLANNING MACHINES: Classification, constructional features, driving d planning operations. Machining time. G AND MILLING MACHINES: Classification, constructional features, drilling types of drilling tools, drill bit nomenclature. Milling Machines: classification, o iilling cutters, nomenclature, milling operations, up milling and down milling, indexing indexing. Machining time. 	and related					
compound	UNIT-III	10 Hrs.					
BROACHING PROCESS: Types of broaching machines – constructional details, applications. NON-TRADITIONAL MACHINING PROCESSES: Need for non-traditional machining, operation and applications of Abrasive Jet Machining, Electric Discharge Machining, Electro Chemical Machining. Laser							
* *							
* *	hining and Electron Beam Machining.	iining. Laser					
Beam Mac	hining and Electron Beam Machining. UNIT–IV	ining. Laser 10 Hrs.					
Beam Mac PATTERN patterns. SAND MG different sa WELDING PRINCIPI welding tec	hining and Electron Beam Machining. UNIT–IV NS: Definition, functions, materials used for pattern, various pattern allowances. Class DULDING: Types of base sand, requirement of base sand. Types of sand moulds, ing and mixtures. Method used for sand moulding. Cores: Definition, need and types. G PROCESS: Definition, classification, application, arc welding, gas welding, TIG and IL LES OF SOLDERING AND BRAZING: Different types of soldering and brazing methologies.	10 Hrs. sification of gredients for MIG.					
Beam Mac PATTERM patterns. SAND MO different sa WELDINO PRINCIPI	hining and Electron Beam Machining. UNIT–IV NS: Definition, functions, materials used for pattern, various pattern allowances. Class DULDING: Types of base sand, requirement of base sand. Types of sand moulds, ing and mixtures. Method used for sand moulding. Cores: Definition, need and types. G PROCESS: Definition, classification, application, arc welding, gas welding, TIG and IL LES OF SOLDERING AND BRAZING: Different types of soldering and brazing methologies.	10 Hrs. sification of gredients for MIG.					

Course Outcomes**

1. Classify manufacturing processes & enumerate the process

2.Illustrate the fundamental principles of metal cutting processes and specify suitable machine tools

3.Suggest a suitable machining process for a given job

4.Recommend a suitable moulding /casting method (sand/special) & a melting furnace to cast given Auto components.

5. Enumerate the process steps involved in a sand casting process and their applications.

6. Suggest a suitable welding Brazing/Soldering process for a given precision job.

Course Outcomes	Programme Outcomes (POs)												Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	1										1	1	2	2	
CO2	3	2	2		2				2			3	1	2	2	
CO3	3	2	2		3							2	1	1	2	
CO4	3	2	2		3							2	1	2	2	
CO5	3	1	3		2		1		2			1	1	1	2	
CO6	3	2	2		2		1					3	1	2	2	

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

UAU314C

MECHANICS OF MATERIALS

Credits: 04

CIE Marks: 50

SEE Marks: 50

L:T:P - N_L :3 N_T:2 N_P 0 Total Hours/Week: 05

UNIT-I	10+6 Hrs.						
SIMPLE STRESS AND STRAIN: Introduction, stress, strain, mechanical properties of ma elasticity, Hooke's law and Poisson's ratio, stress – strain relation – behavior in tension for mild ferrous metals. Extension shortening of a bar, bars with cross sections varying in steps, bars with varying (circular and rectangular), elongation due to self weight, principle of super position. STRESS IN COMPOSITE SECTION : Volumetric strain, expression for volumetric strain, elas	steel and non continuously						
simple shear stress, shear strain, temperature stresses (including compound bars).	-						
UNIT–II	10+6 Hrs.						
COMPOUND STRESSES: Introduction, plane stress, stresses on inclined sections, principal maximum shear stresses, Mohr's circle for plane stress. THICK AND THIN CYLINDERS : Stresses in thin cylinders, changes in dimensions of cylinder length and volume), thick cylinders subjected to internal and external pressures (Lame's equation).							
UNIT-III	10+8 Hrs.						
BENDING MOMENT AND SHEAR FORCE IN BEAMS: Introduction, types of beams, loads and reactions, shear forces and bending moments, rate of loading, sign conventions, relationship between shear force and bending moment diagrams for different beams subjected to concentrated loads, uniform distributed load (UDL) and couple for different types of beams. BENDING AND SHEAR STRESSES IN BEAMS: Introduction, theory of simple bending, assumptions in							
simple bending, relationship between bending stresses and radius of curvature, relationship betw	veen bending						
moment and radius of curvature, moment carrying capacity of a section, shearing stresses in beams	s, shear stress						
across rectangular, circular, symmetrical I and T sections. Frames and over hanging beams.							
UNIT–IV	10+6 Hrs.						
DEFLECTION OF BEAMS : Introduction, differential equation for deflection, equations for defl and moments, double integration method for cantilever and simply supported beams for point load and couple, Macaulay's method. TORSION OF CIRCULAR SHAFTS AND ELASTIC STABILITY OF COLUMNS: Introd torsion, assumptions, derivation of torsional equations, polar modulus, torsional rigidity / stiffne power transmitted by solid and hollow circular shafts. Introduction to columns, Euler's theory loaded elastic long columns, derivation of Euler's load for various end conditions, limitations of Eu Rankine's formula.	d, UDL, UVI luction, pure ess of shafts, y for axially						
Reference Books *							
TEXT BOOKS:							
 Mechanics of Materials, SI Edition, Barry J. Goodno, James M. Gere Cengage Learning, 2017 A TEXTBOOK OF STRENGTH OF MATERIALS, Dr. R. K. BansalISBN :978813180814 2019 							
REFERENCE BOOKS:							

1. Strength of Materials, 4th edition, S S Bhavikatti, Vikas Publishing, 2013

2. Mechanics of Materials, Beer, Johnston, Dewolf, Mazurek, Sanghi, Jul 2017

Co	ourse Outcomes**
1.	To define the fundamental terms of mechanics of materials
2.	To derive equations for the stresses, strains and deformations in structural elements subjected to different types of loads
3.	To solve numerical problems using the analytical and graphical methods
4.	To compute the bending / shear stresses and deflection of beams
5.	The students are able to apply the concepts of solid mechanics in the design of simple machine elements.
6.	Simulate the mechanical elements receiving axial compressive loads under different end conditions and determine their columnar stability

Course Outcomes	Programme Outcomes (POs)											Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	2	2									2	2	2	2
CO2	3	2	2									2	2	2	2
CO3	3	3	3									2	1	2	2
CO4	3	3	3									2	1	2	2
CO5	3	3	3									2	1	2	2
CO6	3	3	3						2			2	1	2	3

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

July

UAU325C		Credits: 03
L:T:P - N _L :3 N _T :0 N _P :0	AUTOMOTIVE CHASSIS	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	10 Hrs.					
LAYOUTS AND FRAMES: Types of automobiles, different automobile layouts; front wheel drid drive, four wheel drive, rear engine layout. Types of frames, materials, different loads on frame, c channel sections, sub frames, passenger car frames, x member type frame, truck frames, box secti- testing of frames, bending and torsion test, body construction and repairs, frame alignment and fran SUSPENSION: Objects, basic considerations, types of suspension springs; construction, rigid axl operation, materials of leaf springs, coil springs, torsion bar, rubber springs, helper springs, ai shock absorbers, independent suspension; front and rear, stabilizer bars, active suspens suspension systems for commercial vehicles trouble shooting. Numerical problems. UNIT–II STEERING SYSTEMS: Two wheeled steering system, four wheeled steering system, steerin multi axle vehicles and long wheeled chassis vehicles, steering mechanisms, correct steering an	ive, rear wheel cross members, on type frame, me defects. le suspension, ir suspension, ion systems, 10 Hrs. ng systems for ngle, cornering					
force, self- righting torque, under steer and over steer, steering linkages, types of steering gear be pinion, recirculating ball type, etc. Steering ratio, turning radius, steering adjustment, steering co steering; hydraulic and electronic, advanced steering systems, trouble shooting of steering system problems.	olumns, power					
UNIT-III	10 Hrs.					
classification of brakes, types, construction, operation of braking systems; mechanical, hydraulic Details of hydraulic systems: master and wheel cylinder, diagonal split systems, bleeding of the affecting brake fluid, pressure differential valve, proportioning valve, metering valve, brake adjut compensation, parking brakes, hill holders, servo brakes, power brakes. Vacuum servo brakes vacuum – boosted hydraulic brakes. Auxiliary braking systems; retarders, exhaust brake, jake brake	brakes, factors 1stment. Brake es, air brakes,					
UNIT-IV	10 Hrs.					
 WHEELS AND TYRES: Types of wheels, construction, wheel dimensions, structure and function, desirable tyre properties, types, materials, manufacture, designation, factors affecting tyre life, rotation and trouble shooting. Heat dissipation, wheel alignment and wheel balancing. FRONT AXLE: Types of front axle, stub axle, materials, loads and stresses, drive line, construction working of drive shaft. REAR AXLE: Types of drive, torque reaction, driving thrust, construction of rear axle supporting; fully floating, semi floating, three quarter floating arrangements, trouble shooting. Numerical problems. Reference Books * 						
TEXT BOOKS:						
1. Automobile Engineering Vol. 1 (Chassis, Body), Dr. Kirpal Singh, 14 th Edition/Reprint 2019						
ISBN:9788180142420, Standard publications, New Delhi						
2. Automotive Chassis Engineering, David C Barton, John D Fieldhouse, Springer, 2018						
REFERENCE BOOKS: 1.The Automotive Chassis: Engineering Principles, Jornsen Reimpell, Helmut Stoll, Jurgen Betzle Butterworth Heinemann, Elsewier	er,					

Butterworth-Heinemann, Elsevier.

1. Automotive Mechanics - SIE Paperback, William Crouse, Donald Anglin, McGraw Hill, Jul 2017

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

Course	Outcomes**
1.	Classify automotive layouts and enumerate the merits and demerits and their applications.
	Illustrate the construction and working of suspension systems and specify suitable suspension systems for vehicles
3.	Enumerate the classification and working of brakes and select suitable system for vehicles
4.	Classify steering systems and working and diagnose its trouble shooting
5.	Recommend tires and wheels for different vehicles
6.	Suggest a suitable front and rear axles for various types of vehicles

Course Outcomes	Programme Outcomes (POs)											Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	1											2	1	2	2
CO2	1											2	1	2	2
CO3	2	3	2	1								2	2	2	2
CO4	3	3	2	2								2	1	2	2
CO5	1											2	1	2	2
CO6	1		3	3								2	1	2	2

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

UAU317		Credits: 01
L:T:P - N _L :0 N _T :0 N _P 2	COMPUTER AIDED MACHINE DRAWING	CIE Marks: 50
Total Hours/Week: 02		SEE Marks: 50

1. Review of graphic interface of the software

Review of basic sketching commands and navigational commands. Standard sheet templates, and creating new templates, different line types and their applications.

- 1) Section of solids: sections of square pyramids, hexagonal prism, cones and cylinders.
- Orthographic views: Conventions used in machine drawings. Sectional planes, Conversion of pictorial views into orthographic projections of simple machine parts with or without section (Bureau of Indian Standards conventions are to be followed for the drawings). Dimensioning and annotations.
- 2. **Thread forms:** Thread terminology, sectional views of threads. ISO Metric (Internal & External), BSW (Internal & External) square and Acme, Sellers thread, American Standard thread.

3. Fasteners :

Hexagonal head bolt, nut and washer (assembly), square headed bolt and nut with washer (assembly) simple assembly using stud bolts with nut and lock nut. Flanged nut, slotted nut, taper and split pin for locking, counter sunk head screw, grub screw, Allen screw.

4. Keys & Joints

Parallel key, taper key, feather key, Gib head key and Woodruff key joint (socket and spigot), knuckle joint (pin joint) for two rods.

5. Couplings

Split Muff coupling, protected type flanged coupling, pin (bush) .type flexible coupling, Oldham's coupling and universal coupling (Hooks' Joint) GT&D, symbols.

Assembly Drawings (Part drawings should be given)

- 1) Plummer block (Pedestal Bearing)
- 2) Screw jack (Bottle type)
- 3) Petrol Engine piston
- 4) I.C. Engine connecting rod.

Laboratory Assessment:

- 1. This subject is to be evaluated for 100 marks (50 CIE and 50 SEE)
- 2. Allocation of 50 marks for CIE
 - Performance and preparation of drawings :
 - 10 sheets manually drawn shall be submitted and each sheet shall be evaluated for 3 marks.
 - One practical test for 20 marks. (5 mark for conversion from isometric to orthographic, 15 marks assembly and printing).
- 3. The SEE practical is conducted for 50 marks of three hours duration. The distribution of marks as 30% from orthographic view, 70 % for part modeling, assembling and creating 2 D views from assembly using CAD Software. No viva voce.
- 4. Question paper shall have two parts, questions for first part shall be asked from conversion of isometric to orthographic views and second part shall be asked from assembly.

5. Student should answer two questions choosing one question from each part. At least one question shall be asked from first 3 assemblies

Course Outcomes**

- 1. Able to utilize CAD software to generate 2D and 3D models.
- 2. Utilize CAD software commands and develop sections of solids.
- 3. Able to convert orthographic views to isometric views using CAD software.

4. Utilize advanced commands to generate assembly drawings of mechanical components.

Course Outcomes	Programme Outcomes (POs)										Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1			3							2	1	2	2
CO2	3	2			3							2	1	2	2
CO3	3	2			3							2	2	2	2
CO4	3	2			3							2	2	2	2

Principal, Basaveshwar Engineering College, BAGALKOT-587–102.

UAU328L

L:T:P - N_L :0 N_T:0 N_P 2 Total Hours/Week:02

MACHINE SHOP PRACTICE

Credits: 01

CIE Marks: 50

SEE Marks: 50

PART – A

- 1) Minimum four jobs using lathe of following machining operations:
- 2) Plain turning, taper turning, step turning, thread cutting, facing, knurling, eccentric turning.

PART – B

- 3) Cutting of gear teeth using milling machine.
- 4) Cutting of V groove / Dovetail / Rectangular groove using shaping machine.
- 5) Demonstration of surface grinding.

Laboratory Assessment:

- 1. Each Laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE)
- 2. Allocation of 50 marks for CIE
 - a. Performance and journal write-up: Marks for each experiment = 30 marks/No. of proposed experiments.
- b. One practical test for 20 marks. (5 write-ups, 10 conduction, calculation, results etc., 5 viva-voce). Allocation of 50 marks for SEE :

Lathe work	: 30 Marks
Shaping or Milling	: 10 Marks
Viva-Voce	: 10 Marks

Course Outcomes**

After completion of the course student will be able to

- 1. Develop skills to operate lathe for turning, Facing, tapering, knurling, step turning, forming and threading operation
- 2. Apply skills to develop jobs on shaper and slotting machine.
- 3. Apply skills to develop jobs using milling machine.
- 4. Apply skills to finish turned or milled jobs using surface grinder.
- 5. Calculate machining time for different operations.

Course Outcomes	Programme Outcomes (POs)										Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2		2				2			2	2	1	2
CO2	3	2	2		2				2			2	2	1	2
CO3	3	2	2		2				2			2	2	1	2
CO4	3	2	2		2				2			2	2	1	2
CO5	3	2			2				2			2	1	1	2

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

L:T:P - N_L :3 N_T:0 N_P 0 Total Hours/Week: 03

MATHEMATICAL METHODS FOR MECHANICAL SCIENCE

Credits: 03 CIE Marks: 50 SEE Marks: 50

UNIT-I	10 Hrs.
Complex Variables:	
Analytic function, Cauchy-Reimann equations in Cartesian and polar forms. Const ructio function (Cartesian and polar forms)	n of analytic
Complex Integration:	
Line integral, Cauchy's theorem – corollaries (without Proof), Cauchy's integral formula.	•
Laurent's series (statements only), singularities, poles, calculation of residues, Cauch	hy's residue
theorem (without proof) – problems.	-
UNIT–II	10 Hrs.
Special Function:	·
Series solution of Bessel's differential equation, recurrence formulae, generating function, o	orthogonal
property, Bessel's integral formula.	
UNIT–III	10 Hrs.
Statistics and Probability	
Statistics: Curve fitting by the method of least squares: $y = a + bx$ $y = ab^x$ and $y = a + bx + a^2$	cx^2
Correlation and regression. Probability : addition rule, conditional probability, multiplication rule, Baye's rule.	
UNIT–IV	
	10 Hrs.
Probability distributions: Binomial distributions Poisson distributions and Normal distributions (No drivations). Co probability, Joint distributions - discrete random variables, Independent random variables, expectation and variance.	ncept of join
Probability distributions: Binomial distributions Poisson distributions and Normal distributions (No drivations). Com probability, Joint distributions - discrete random variables, Independent random variables,	ncept of join Problems or
Probability distributions: Binomial distributions Poisson distributions and Normal distributions (No drivations). Con probability, Joint distributions - discrete random variables, Independent random variables, expectation and variance. Markov chains: Markov chains: Introduction, Probability vectors, Stochastic Matrices, Fixed Points and Regu Matrices, Markov chains, higher transition probabilities, stationary distribution of regular M	ncept of joint Problems or lar stochastic
 Probability distributions: Binomial distributions Poisson distributions and Normal distributions (No drivations). Comprobability, Joint distributions - discrete random variables, Independent random variables, expectation and variance. Markov chains: Markov chains: Introduction, Probability vectors, Stochastic Matrices, Fixed Points and Regu Matrices, Markov chains, higher transition probabilities, stationary distribution of regular M and absorbing states. Reference Books * Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers, New 2. Theory and problems of probability by Seymour Lipschutz (Schaum's Series). Advanced Engineering Mathematics by H. K. Dass Advanced Engineering Mathematics by E Kreyszig (John Wiley & Sons 5. Probability and stochastic processes by Roy D. Yates and David J. Goodman, 	ncept of join Problems or lar stochastic larkov chains w Delhi.
 Probability distributions: Binomial distributions Poisson distributions and Normal distributions (No drivations). Comprobability, Joint distributions - discrete random variables, Independent random variables, expectation and variance. Markov chains: Markov chains: Introduction, Probability vectors, Stochastic Matrices, Fixed Points and Regu Matrices, Markov chains, higher transition probabilities, stationary distribution of regular M and absorbing states. Reference Books * Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers, New 2. Theory and problems of probability by Seymour Lipschutz (Schaum's Series). Advanced Engineering Mathematics by H. K. Dass Advanced Engineering Mathematics by E Kreyszig (John Wiley & Sons 5. Probability and stochastic processes by Roy D. Yates and David J. Goodman, pvt.ltd 2nd edition 2012. 	ncept of joint Problems or lar stochastic larkov chains w Delhi.
 Probability distributions: Binomial distributions Poisson distributions and Normal distributions (No drivations). Concrete bilding of the probability, Joint distributions - discrete random variables, Independent random variables, expectation and variance. Markov chains: Markov chains: Introduction, Probability vectors, Stochastic Matrices, Fixed Points and Regu Matrices, Markov chains, higher transition probabilities, stationary distribution of regular Mand absorbing states. Reference Books * Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers, New 2. Theory and problems of probability by Seymour Lipschutz (Schaum's Series). Advanced Engineering Mathematics by H. K. Dass Advanced Engineering Mathematics by Roy D. Yates and David J. Goodman, 	ncept of joir Problems o lar stochasti larkov chain w Delhi.

After completion of the course student will be able to

CO1: To apply the least square sense method to construct the specific relation for the given group of data.

CO2: To apply the concept of probability to find the physical significance of various distribution

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

phenomena.

- **CO3:** To apply the concept of probability to perform engineering duties in planning and designing, engines, machines and other mechanically functioning.
- **CO4:** To apply the concept of probability to study the performance of Mechanical systems.
- **CO5:** To apply the concept of Markov Chain for commercial and industry purpose.

Course Outcomes	Programme Outcomes (POs)										Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															

UAU412C

FLUID MECHANICS

Credits: 03

L:T:P - N_L :3 N_T : $ON_P O$ Total Hours/Week: 03 CIE Marks: 50 SEE Marks: 50

UNIT-I 10 Hrs. **PROPERTIES OF FLUIDS:** Introduction, properties of fluids, classification of fluids, thermodynamic properties of fluids. FLUID STATICS - PRESSURE AND ITS MEASUREMENT: Fluid pressure at a point, Pascal's law, pressure variation in a static fluid, absolute, gauge, atmospheric and vacuum pressure, simple manometers, differential manometers. UNIT-II 10 Hrs. FLUID STATICS- HYDROSTATIC FORCES ON SURFACES: Total pressure and center of pressure, vertical plane surface submerged in liquid, horizontal plane surface submerged in liquid, inclined plane surface submerged in liquid, curved surface submerged in liquid. **BUOYANCY AND FLOATATION:** Buoyancy, center of buoyancy, metacenter and metacentric height, conditions of equilibrium of floating and submerged bodies. UNIT-III 10 Hrs. FLUID KINEMATICS: Types of fluid flow, flow net, continuity equation, continuity equation in three dimensions (Cartesian co-ordinate system only), velocity and acceleration, velocity potential function and stream function for 2D flow and types of motion. FLUID DYNAMICS: Introduction, equations of motion, Euler's equation of motion, Bernoulli's equation from Euler's equation, Bernoulli's equation for real fluids. FLUID FLOW MEASUREMENTS: Introduction, venturimeter, orifice meter, Pitot tube. UNIT-IV 10 Hrs. LAMINAR FLOW AND VISCOUS EFFECTS: Reynolds's number, critical Reynolds's number, laminar flow through circular pipe - Hagen Poiseulle's equation, laminar flow between parallel and stationary plates. FLOW THROUGH PIPES: Frictional loss in pipe flow, major energy losses and minor energy losses in pipe flow, Darcy- equation for loss of head due to friction in pipes, Chezy's equation for loss of head due to friction in pipes, hydraulic gradient and total energy line. DIMENSIONAL ANALYSIS: Introduction, derived quantities, dimensions of physical quantities, dimensional homogeneity, Buckingham's- π theorem, Raleigh's method, dimensionless numbers, similitude, types of similitude. Reference Books *

Text books:

Kumar.D.S, "Fluid Mechanics and Fluid power Engineering" Kataria and sons-2010
 Dr.Bansal.R.K, "Fluid Mechanics" by Lakshmi Publications, 2010.
 OijushK.Kundu, IRAM COCHEN, EL SEVIER 3 rd Ed. 2005.

Reference Books:

- 1. Yunus A, Cenegel, John M, Cimbala, Fluid Mechanics, Fundamentals and Applications Tata by TATA McGraw Hill, 2013.
- 2. John F.Douglas, Janul and M.Gasiosek and john A.Swaffield, Fluid Mechanics published by Prentice hall 2007.

Course	e Outcomes**
1.	Demonstrate the basic concepts of fluid mechanics, properties and fluid statics
2.	Compute force of buoyancy and floatation and analyze its conditions
3.	Formulate equations of motion of fluid and apply to fluid flow measurements
4.	Apply principles of dimensional analysis, similitude and use dimensionless parameters to solve the problems
5.	Identify and optimize the fluid flow to analyze the problems
6.	Evaluate the characteristics of laminar flow and viscous effects to solve problems

Course Outcomes	Programme Outcomes (POs)										Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1		1		1						1	2	1	2
CO2	3	3	1	1		1						1	3	1	2
CO3	3	1		1		1							3	1	2
CO4	3	3	1	1		1						1	3	1	2
CO5	3	3	1	1		1	1					3	3	1	2
CO6	3	3	1	1		1	1					2	3	1	2

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

Juny

UAU415C	
---------	--

 $L:T:P - N_L :3 N_T:0 N_P 0$

Total Hours/Week: 03

THEORY OF AUTOMOTIVE ENGINES

Credits: 03

CIE Marks: 50

SEE Marks: 50

UNIT-I	10 Hrs.
INTRODUCTION : Historical development of automobiles. Types of power plant, Classification V - engines, stratified charge engines, variable compression ratio engine. Principle of engine of and CI two stroke and four stroke engines. Scavenging systems: Theoretical processes, relative merits and demerits, valve and port timing diagrams. AIR STANDARD CYCLES : Otto, Diesel and dual cycle - efficiency and mean effective pres	operation - S parameters,
cycles: Introduction and mixture strength variations.	
UNIT–II	10 Hrs.
COMBUSTION IN S.I. ENGINES : Ignition limits, stages of combustion, ignition lag, effect of er on ignition lag, flame propagation, effect of var iables, abnormal combustion, detonation detonation, effect of engine variables on detonation, control of detonation, surface ignition. K SI engine fuels. HUCR engine. Combustion chamber: requirements, types, advantages and limit	on, theory connection theory of the connection o
UNIT–III	10 Hrs.
affecting delay period, diesel knock, methods of controlling diesel knock. Cl engine combustion open and divided. Swirl; induction, turbulent and combustion swirl chambers. M - Combustion ENGINE PERFORMANCE : Performance parameters; BHP, FHP, IHP, specific fuel co volumetric efficiency, thermal efficiency, specific weight, heat balance sheet and testing of engi	chamber.
UNIT–IV	10 Hrs.
LIQUID FUELS: Properties: specific gravity, viscosity, flash and fire points, calorific value, ratin PETROL FUEL: Octane number, chemical energy of fuels, reaction equation, volatility proper mixture, combustion temperature. DIESEL FUELS: Cet ane number, vapor pressure, cloud and pour point, annealing point, carbon residue. Chemical energy of fuels, reaction equation, properties of A/ F mixture, temperature, rating of fuels. DUAL FUEL AND MULTI-FUEL ENGINES: Combustion in dual fuel engines, factors affecting of Main types of gaseous fuels, supercharge knock control and performance of diesel fu Char acteristics of multi fuel engines, modification of fuel system, suitability of various engi fuel unit, performance of multi fuel engines.	erties of A/ diesel index , combustior combustion. uel engines.
Reference Books *	

Text books:

- 1. I.C. Engines By Mathur & Sharma, Dhanpat Rai & Sons, New Delhi, 1994
- 2. Fuels & Combustion by S.P. Sharma & Chandramohan, Tata McGraw Hill, New Delhi ,1987

Reference books:

- 1. I.C. Engines & Air pollution by Obert, Harper & Row Roni publishers, New york, 1973 Fuels & Combustion by Smith & Stinson,
- 2. I.C. Engines by Lichty
- 3. I.C. Engines by Maleev, CBSPub.
- 4. Combustion fundamentals by Roger A Strehlow

Course	e Outcomes**
1.	Compare and correlate between principle of engine operation, theoretical and actual cycle diagrams
2.	Recommend the suitability of fuels for various applications and evaluate the performance of engine using key parameters
3.	Correlate between power plants with valve timing diagrams of CI and SI Engines.
4.	Evaluate abnormal combustion and its impact on engine performance
5.	Illustrate the dual and multi fuel engines and its applications
6.	Analyze the phases of combustion and their significance in Engine performance

Course Outcomes	Programme Outcomes (POs)												Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	3	2	1	1	1			2		1	1	2	2	2		
CO2	3	3	2	1	1	1			2		1	1	2	2	2		
CO3	3	3	2	1	1	1			2		1	1	2	2	2		
CO4	3	3	2	1	1	1			2		1	1	1	2	2		
CO5	3	3	2	1	1	1			2		1	1	2	2	2		
CO6	3	3	2	1	1	1			2		1	1	2	2	2		

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

UAU416C
L:T:P - N _L : 3 N _T : 0 N _P 0

Total Hours/Week: 03

AUTOMOTIVE TRANSMISSION SYSTEMS

Credits: 03

CIE Marks: 50

SEE Marks: 50

UNIT-I	10 Hrs.
OWER REQUIRED FOR PROPULSION: Resistances: wind, gradient and rolling resistances: wind, gradient and rolling resistances: Traction, tractive effort, road performance curves; acceleration, gradability, umerical problems.	
LUTCH: Need of clutch, requirements, materials, different types of clutches, principle	of friction
lutches, single plate, multi-plate, diaphragm, cone, centrifugal clutch, semi- centrifugal clutch	
ctuation; mechanical, electromagnetic, hydraulic and vacuum, adjustment of clutch, wet and	
lutches, clutch trouble shooting diagnosis and numerical problems.	
UNIT-II	10 Hrs.
LUID COUPLING AND ONE WAY CLUTCHES: Necessity, constructional details, ty	
pplication, percentage slip, one way clutch, working fluid requirements, fluid coupling ch	
IYDRODYNAMIC TORQUE CONVERTERS: Introduction, comparison between fluid couplin onverter, performance characteristics, slip, principle of torque multiplication, 3 and 4 onverter, typical hydrodynamic transmission. DRIVE LINE : Front universal joint, CV joint-inner and outer, slip joint.	phase torqu
INAL DRIVE GEARS: Axle ratio, gear tooth nomenclature. Differential, limited slip differen	
ase; inter axle differential, locking differential, electronic control of transfer cases and dri	ve trains, a
heel drive. Trouble shooting diagnosis of final drive.	
UNIT–III	10 Hrs.
EAR BOX: Functions of transmissions, necessity of gear box, gears, gear ratio and torquansmission; manual and automatic transmission, sliding-mesh gear box, constant-mereynchromesh gear box. Transfer box. Transaxle; construction and operation, dual rangelector mechanism and its types and interlock devices, gearbox lubrication. Calculation of gehicles, performance characteristics in different gears. Switches and sensors - Transmission ansaxle. Trouble shooting diagnosis and servicing and maintenance of manual transfer transmission, types of planetary transmission, calculation in different speeds, over drives, numerical problems. IVDROSTATIC DRIVES: Principle of hydrostatic drives, different systems of hydrostatic drivumps, advantages and limitations, typical hydrostatic drives.	sh gear bo ge transaxi gear ratios f on Controlle mission and ation of gear
UNIT-IV	10 Hrs.
UTOMATIC TRANSMISSION : Hydraulic system, automatic t ransmission fluid, t ransmoolers, basic hydraulic control circuits, accumulator, shift timing, governor pressure, three ontrolling shift timing and quality, hydraulic valves and valve bodies, starting contronterlocks, electronic shift control, shift solenoid, automatic shift counter shaft t ransmission eneral description of Borg-Warner automatic transmission, Continuous Variable Transmission LECTRIC TRANSMISSION : General arrangement and description of electric transmission	ottle pressur ols and sh ion. Principl on(CVT).

Reference Books *

TEXT BOOKS: 1. **Automobile Engineering – I & II** – Kirpal Singh

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

- 2. Automobile Engineering G. B. S. Narang
- 3. Automotive Mechanics William Crouse

Course Outcomes**

- Illustrate the fundamentals related to various resistances offered to the motion of vehicle and tractive effort.
- 2. Recommend a suitable clutch for a given vehicle and their construction and working with details about trouble shooting
- 3. Assess the importance of torque converters and analyze the functioning of final drive
- 4. Analyze, interpret and compare various types of gear box and its operation.
- 5. Analyze the principle of hydrostatic drives and its applications.
- 6. Assess the potential, utility, features and mechanism of Automatic transmission.

Course Outcomes				Program Specific Outcomes (PSOs)											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1					1	1	1	1	2	2	2
CO2	3	1	1	1					1	1	1	1	2	2	2
CO3	3	2	1	1					1	1	1	1	1	2	2
CO4	3	1	1	1					1	1	1	1	2	2	2
CO5	3	2	1	1					1	1	1	1	2	2	2
CO6	3	2	1	1					1	1	1	1	2	2	2

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

DESIGN OF MACHINE ELEMENTS - I

Credits: 04 CIE Marks: 50

SEE Marks: 50

L:T:P - N_L : 3N_T: 2N_P 0 Total Hours/Week: 05

UNIT-I	10+8 Hrs.
INTRODUCTION: Classification of design, design procedure, standardization, preferred numb	
of materials, manufacturing consideration in design. STRESSES IN ELEMENTARY MACHINE PARTS: Definitions derived from stress; strain dia	aram loads
stress, strain, stress strain diagrams. Factor of safety, combined stresses, eccentric loading	
failure, stress concentration, stress concentration factor, variable stresses, endurance limit, fa	
concentration factor, notch sensitivity, impact loading, design criteria.	U
UNIT–II	10+8 Hrs.
 SHAFTS: Introduction, material used for shafting, stresses in shafts, design of shafts, shafts twisting moment, bending moment. Combined bending and twisting moment, axial load in additi and torsion, fluctuating loads, design of shaft on the basis of rigidity, ASME and ISI codes transmission shafting. KEYS, COUPLINGS, COTTER AND KNUCKLE JOINTS: Types of keys, design of keys, shaft types, design of muff coupling, flange coupling, pin type flexible coupling. Oldham's couplir coupling, socket and spigot type cotter joint, knuckle joint. 	on to bending for design of ts couplings;
UNIT–III	10+6 Hrs.
THREADED FASTENERS AND POWER SCREWS: Uses of screw threads, design of screw thr	eads, design
of screw threads, threaded fasteners, effect of initial tension, effect of applied loads; bolt	stress, bolt
spacing, effect of dynamic loads, bolts subjected to shear and eccentric loading, bolts subjec	
eccentric loading, power screws; efficiency of screw threads, differential screws stress in powe	
UNIT–IV	10+6 Hrs.
RIVETED JOINTS: Types of joints, design stresses, design of typical joints, boiler joint, tank and	
structural joints. WELDED JOINTS: Types of joint deign stresses, design of typical joints, eccentrically load	had wolded
joints.	
Reference Books *	

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

TEXT BOOKS:

- 1. Theory and problems of Machine Design by Hall (Schaum's 'Outline)
- 2. Design of Machine Members by Vallance and doughtle
- 3. Machine design by Maleev and Hartman.

REFERENCES:

- 1. A Text book of Machine Design by R.S.Khurmi and J.K.Gupta.
- 2. Elements of Machine Design by Pandya and Shah. Machine Design by Black
- 3. Mechanical Engineering Design by Shigley. Machine Design Elements by M.P. Sports.

DATA HANDBOOKS:

- 1. Machine design data hand book by Lingiah.
- 2. Machine design data hand book by Balaveer a Reddy.

Course	Outcomes**
1.	Classify the design approaches, design procedure and consideration
2.	Analyze the stress and strain of mechanical components, and identify, quantify failure modes for mechanical parts.
3.	Design and analysis of shafts and other mechanical component subjected to twisting and bending moment.
4.	Design and analyze keys, coupling, and knuckle joints for various load condition.
5.	Ability to design and analyze screw threaded fastener for various load condition.

Course Outcomes				Pro	gran	nme	Out	com	es (F	POs)			Program Specific Outcomes (PSOs)				
	1	1 2 3 4 5 6 7 8 9 10 11 12										1	2	3			
CO1	3	1	2									1	2	2	2		
CO2	3	2	2	2								2	2	3	2		
CO3	3	3	3	3								2	3	2	2		
CO4	3	3	3	3								2	3	3	2		
CO5	3	3	3	3								2	3	3	2		

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

June

UAU433C	

THEORY OF MACHINES

Credits: 04

CIE Marks: 50

SEE Marks: 50

L:T:P - N_L :3 N_T:2 N_P 0 Total Hours/Week: 05

UNIT-I	10+6 Hrs.
INTRODUCTION: Definitions: link or element, kinematics pairs, degrees of freedom, Grubler	's criterion,
Kinematic chain, mechanism, structure, mobility of mechanism, inversion, machine.	
KINEMATIC CHAINS AND INVERSIONS: Inversions of four bar chain; single slider crai	nk chain and
double slider crank chain.	
MECHANISMS: Quick return motion mechanisms - drag link mechanism, Whitworth mechanism	chanism and
crank and slotted lever mechanism. VELOCITY ANALYSIS BY INSTANTANEOUS CENTER METHOD: Definition, Kennedy	's theorem,
determination of linear and angular velocity using instantaneous center method. Klein's of	construction:
Analysis of velocity and acceleration of single slider crank mechanism.	
UNIT–II	10+8 Hrs.
STATIC FORCE ANALYSIS: Static force analysis: introduction: Static equilibrium, equilibriur	n of two and
three force members. Members with two forces and torque, free body diagrams, principle of	virtual work.
Static force analysis of four bar mechanism and slider-crank mechanism with and without frict	ion.
DYNAMIC FORCE ANALYSIS: De Alembert's principle, inertia force, inertia torque, dyn	
analysis of four - bar mechanism and slider crank mechanism. Dynamically equivalent syst	ems. Turning
moment diagrams of flywheel, fluctuation of energy. Determination of flywheel size.	
BALANCING OF ROTATING MASSES: Static and dynamic balancing, balancing of single rot	-
by balancing masses in same plane and in different planes. Balancing of several rotating	masses by
balancing masses in same plane and in different planes.	
UNIT–III	10+8 Hrs.
BALANCING OF RECIPROCATING MASSES: Inertia effect of crank and connecting rod, si	. .
engine, balancing in multi cylinder inline engine, primary and secondary forces, V - engir engine.	ne and radial
engine.	
GOVERNORS: Types of governors, controlling force, stability, sensitiveness, isochronism,	
GOVERNORS: Types of governors, controlling force, stability, sensitiveness, isochronism, power. Force analysis of Porter and Hartnell governors.	effort and
GOVERNORS: Types of governors, controlling force, stability, sensitiveness, isochronism, power. Force analysis of Porter and Hartnell governors. GEAR TRAINS: Simple gear trains, compound gear trains for large speed reduction, epicyclic	effort and c gear trains,
GOVERNORS: Types of governors, controlling force, stability, sensitiveness, isochronism, power. Force analysis of Porter and Hartnell governors. GEAR TRAINS: Simple gear trains, compound gear trains for large speed reduction, epicyclic algebraic and tabular methods of finding velocity ratio of epicyclic gear trains. Tooth load	effort and c gear trains,
GOVERNORS: Types of governors, controlling force, stability, sensitiveness, isochronism, power. Force analysis of Porter and Hartnell governors. GEAR TRAINS: Simple gear trains, compound gear trains for large speed reduction, epicyclic	effort and c gear trains,
GOVERNORS: Types of governors, controlling force, stability, sensitiveness, isochronism, power. Force analysis of Porter and Hartnell governors. GEAR TRAINS: Simple gear trains, compound gear trains for large speed reduction, epicyclic algebraic and tabular methods of finding velocity ratio of epicyclic gear trains. Tooth load calculations in epicyclic gear train. UNIT-IV	effort and c gear trains, I and torque 10+6 Hrs.
GOVERNORS: Types of governors, controlling force, stability, sensitiveness, isochronism, power. Force analysis of Porter and Hartnell governors. GEAR TRAINS: Simple gear trains, compound gear trains for large speed reduction, epicyclic algebraic and tabular methods of finding velocity ratio of epicyclic gear trains. Tooth load calculations in epicyclic gear train. UNIT-IV GYROSCOPE: Vectorial representation of angular motion, gyroscopic couple. Effect of gyros	effort and c gear trains, I and torque 10+6 Hrs.
GOVERNORS: Types of governors, controlling force, stability, sensitiveness, isochronism, power. Force analysis of Porter and Hartnell governors. GEAR TRAINS: Simple gear trains, compound gear trains for large speed reduction, epicyclic algebraic and tabular methods of finding velocity ratio of epicyclic gear trains. Tooth load calculations in epicyclic gear train. UNIT-IV GYROSCOPE: Vectorial representation of angular motion, gyroscopic couple. Effect of gyros on ship,plane disc, aeroplane, stability of two wheelers and four wheelers.	effort and c gear trains, l and torque 10+6 Hrs. scopic couple
GOVERNORS: Types of governors, controlling force, stability, sensitiveness, isochronism, power. Force analysis of Porter and Hartnell governors. GEAR TRAINS: Simple gear trains, compound gear trains for large speed reduction, epicyclic algebraic and tabular methods of finding velocity ratio of epicyclic gear trains. Tooth load calculations in epicyclic gear train. UNIT-IV GYROSCOPE: Vectorial representation of angular motion, gyroscopic couple. Effect of gyros on ship,plane disc, aeroplane, stability of two wheelers and four wheelers. CAMS: Types of cams, types of followers, displacement, velocity and acceleration time cu	effort and c gear trains, l and torque 10+6 Hrs. scopic couple rves for cam
GOVERNORS: Types of governors, controlling force, stability, sensitiveness, isochronism, power. Force analysis of Porter and Hartnell governors. GEAR TRAINS: Simple gear trains, compound gear trains for large speed reduction, epicyclic algebraic and tabular methods of finding velocity ratio of epicyclic gear trains. Tooth load calculations in epicyclic gear train. UNIT-IV GYROSCOPE: Vectorial representation of angular motion, gyroscopic couple. Effect of gyros on ship,plane disc, aeroplane, stability of two wheelers and four wheelers. CAMS: Types of cams, types of followers, displacement, velocity and acceleration time cu profiles. Disc cam with reciprocating follower having knife - edge, roller and flat - fac	effort and c gear trains, l and torque 10+6 Hrs. scopic couple rves for cam ed follower,
GOVERNORS: Types of governors, controlling force, stability, sensitiveness, isochronism, power. Force analysis of Porter and Hartnell governors. GEAR TRAINS: Simple gear trains, compound gear trains for large speed reduction, epicyclic algebraic and tabular methods of finding velocity ratio of epicyclic gear trains. Tooth load calculations in epicyclic gear train. UNIT-IV GYROSCOPE: Vectorial representation of angular motion, gyroscopic couple. Effect of gyros on ship,plane disc, aeroplane, stability of two wheelers and four wheelers. CAMS: Types of cams, types of followers, displacement, velocity and acceleration time cu	effort and c gear trains, l and torque 10+6 Hrs. scopic couple rves for cam ed follower,

Reference Books *

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Text Books:

- 1. "Theory of Machines", Rattan S.S, Tata McGraw-Hill Publishing Company Ltd., New Delhi, and 2nd edition -2005.
- 2. "Theory of Machines", Sadhu Singh, Pearson Edn (Singapore) Pvt. Ltd., Indian Branch, New Delhi, 2nd Edi. 2006.

Reference books:

- 1. "Theory of Machines & Mechanisms", Shigley. J V. and Uickers, JJ, OXFORD University press.2004.
- 2."Theory of Machines -I", by A.S.Ravindra, Sudha Publications Revised 5th Edi. 2004.

Course Outcomes**

- 1. Analyze the given machine/ mechanism for their type and mobility
- 2. Determine the velocity and acceleration of links in the mechanism using graphical and analytical methods
- 3. Carry out the static and dynamic force analysis for a given mechanism.
- 4. Formulate the equations for kinematic and dynamic analysis of gear and gear trains
- 5. Analyze the dynamic forces and couples on rotating and reciprocating components of machines to compute the magnitude and direction of balancing mass.
- 6. Develop a cam profile for a given follower motions and ascertain the gyroscopic and centrifugal couple for a given application

Course Outcomes				Pro	gran	nme	Out	com	es (F	POs)			Program Specific Outcomes (PSOs)				
	1	1 2 3 4 5 6 7 8 9 10 11 12									1	2	3				
CO1	3	3	2	1	1	1			2		1	1	2	2	2		
CO2	3	3	2	1	1	1			2		1	1	2	2	2		
CO3	3	3	2	1	1	1			2		1	1	2	2	2		
CO4	3	3	2	1	1	1			2		1	1	1	2	2		
CO5	3	3	2	1	1	1			2		1	1	2	2	2		
CO6	3	3	2	1	1	1			2		1	1	2	2	2		

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UAU437

L:T:P - N_L :0 N_T:0 N_P 2

FOUNDRY AND FORGING PRACTICE

Credits: 01

CIE Marks: 50

Aarks: 50

xx Hrs.

$L:I:P - N_L : 0 N_T : 0 N_P 2$		CIE Mari
Total Hours/Week: 02		SEE Mar
	UNIT-I	
	Part - A	
1. TESTING OF MOLDING	SAND AND CORE SAND	
	ns and conduction of the following tests:	
	and tensile tests on universal sand testing machine.	
b. Permeability test c. Core hardness & mo	uld handmass tasts	
	per test (Sieve analysis test)	
e. Clay content test	ser test (blove unarysis test)	
f. Moisture content test	t.	
	Part - B	
2. FOUNDRY PRACTICE		
	and other equipments.	
-	ds using molding boxes using patterns or without patter	erns.
c. Preparation of one ca	asting (Aluminum or cast iron - Demonstration only)	
	Part - C	
3. FORGING OPERATIONS		bonding
operations.	three forged models involving upsetting, drawing and	bending
	odels, at least one model is to be prepared by using po	wer hammer.
Laboratory Assessment:		
	is evaluated for 100 marks (50 CIE and 50 SEE)	
2. Allocation of 50 marks for		
3. Performance and journal experiments.	write-up: Marks for each experiment $= 30$ marks/No.	of proposed
3. One practical test for 20 etc.5 (viva voc) marks. (5 write-up, 10 conduction, calculation, results e).	S
Allocation of 50 marks for	· SEE:	
Part-A	: 20 Marks	
Part-B or Part-	-C : 20 Marks	
Viva-Voce	: 10 Marks	
Course Outcomes**		
1. To have understood va	rious processes carried out in Foundry.	
2. Ability to prepare dif	fferent types of mold cavities and different sand testing	g methods.
	-	

3. Demonstrate various skills of sand preparation and different molding methods.

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

- 4. Able to know manufacturing process that in turn provide the student with the capacity to better understand and realization of engineering products and system.
- 5. Aware of importance of manufacturing process in an industry and the applications.

Course Outcomes		Programme Outcomes (POs)							Program Specific Outcomes (PSOs)						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2							2			1	1	2	2
CO2	3	2	2						1				1	2	2
CO3	3	2	2		2		1		2				1	2	2
CO4	3	2	2		2							1	1	2	2
CO5	3	2	2		2				2			1	2	2	3

CIE Marks: 50

SEE Marks: 50

Total Hours/Week: 02

Part - A

FUELS LAB:

- **1.** Determination of flash point and fire point of lubricating oil using Ables' apparatus.
- **2.** Determination of flash point and fire point of lubricating oil using Pensky Martin apparatus.
- **3.** Determination of viscosity of lubricating oil using Redwood viscometer.
- 4. Determination of viscosity of lubricating oil using Saybolt viscometer.

Part - B

TESTS ON IC ENGINES:

- 1. Performance tests on I.C engines, calculations of IP, BP, FP, Thermal, volumetric and mechanical efficiency, SFC and heat balance sheet for:
 - **a**) Four stroke single cylinder petrol engine.
 - **b**) Four stroke single cylinder diesel engine.
 - **c**) Four stroke twin cylinder diesel engine.
 - d) Multi cylinder petrol engine for Morse test.
 - e) Computerized single cylinder four stroke diesel engine.
- 2. Valve timing opening diagram of four stroke diesel / petrol engine.

Laboratory Assessment:

- 1. Each Laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE)
- 2. Allocation of 50 marks for CIE
 - Performance and journal write-up : Marks for each experiment = 30 marks/No. of proposed experiments.
 - One practical test for 20 marks. (5 write-up, 10 conduction, calculation, results etc., 5 viva-voce).

Allocation of 50 marks for SEE

Part-A	: 10 Marks
Part-B	: 30 Marks
Viva-Voce	: 10 Marks

Course	e Outcomes**
1.	Able to know and analyze the various properties of fuels
2.	Able to know and analyze the valve timing diagram for different engines
3.	Able to know and analyze and to perform experiments on various engines
4.	To conduct performance study against malfunctioning and emission tests

Course Outcomes	Programme Outcomes (POs)							Program Specific Outcomes (PSOs)							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2							2			1	1	2	2
CO2	3	2							1				1	2	2
CO3	3	2							2				1	2	2
CO4	3	2										1	2	2	2

UAU439L

L:T:P - N_L :0 N_T: 0 N_P 2 Total Hours/Week: 02

MATERIAL TESTING AND MEASUREMENT LABORATORY

Credits: 01

CIE Marks: 50

SEE Marks: 50

PART - A

- a. Tensile and compression test of metallic and non metallic specimens using a universal testing machine.
- b. Shear test of metallic and non metallic specimens using a universal testing machine
- c. Bending test on metallic and non metallic specimen.
- d. Impact test: Izode and Charpy tests on M.S. Specimen.
- e. Hardness test: Brinell, Rockwell and Vickers's test.

PART - B

- a. Calibration of pressure gauge.
- b. Calibration of micrometer using slip gauges.
- c. Measurement of angle using sine bar/sine centre.
- d. Measurement of screw thread parameters by two wire method.

Laboratory Assessment:

1. Each Laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE)

2. Allocation of 50 marks for CIE

- Performance and journal write-up : Marks for each experiment = 30 marks/No. of proposed experiments.
- One practical test for 20 marks. (5 write-up, 10 conduction, calculation, results etc., 5 viva-voce).

Allocation of 50 marks for SEE

Part-A	: 20 Marks
Part-B	: 20 Marks
Viva-Voce	: 10 Marks

Course Outcomes**

- 1. To conduct impact tests and find impact value of specimens.
- 2. To conduct hardness tests and find hardness number for different specimens.

3. To utilize UTM for tensile, compression and bending tests on mild steel and wooden specimens.

4. Demonstrate calibration techniques to various measuring devices to standardize the instruments.

5. Acquire knowledge about Measurements and Measuring procedures.

Course Outcomes		Programme Outcomes (POs)						Program Specific Outcomes (PSOs)							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1										2	1	2	2
CO2	3	2										2	1	2	2
CO3	3	2										2	1	2	2
CO4	3	1										2	2	2	2
CO5	3	2										2	1	2	2

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

my y

Basveshwar Engineering College, Bagalkote

Department of Automobile Engineering

Scheme of Teaching and Evaluation (Academic Year 2021 - 2022)

V Semester BE

Sl.	Subject Code	Subject Title	Credits	Ho	urs/ W	eek	Examination Marks			
No	Subject Code	Subject The	Creuits	L	Т	Р	CIE	SEE	Total	
1.	UAU541C	Heat Transfer	3	3	0	0	50	50	100	
2.	UAU532C	Design of Power Train and Suspension Systems	3	2	2	0	50	50	100	
3.	UAU523H	Entrepreneurship and Industrial Management	3	2	0	0	50	50	100	
4.	UAU524C	Auxiliary System for Automotive Engines	3	3	0	0	50	50	100	
5.	UAUXXXE	Dept. Elective - I	3	3	0	0	50	50	100	
6.	UCS559L	Advanced C Programming Lab	2	0	0	4	50	50	100	
7.	UHS002N	Advanced Quantitative Aptitude and Soft Skills.	1	1	0	0	50	50	100	
8.	UAU527L	Automotive Engine Servicing Laboratory	1.5	0	0	3	50	50	100	
9.	UAU538L	Automotive Scanning Laboratory	1.5	0	0	3	50	50	100	
		Total	21	14	2	10	450	450	900	

Department Electives – I

Sl. No	Code	Subjects
1	UAU571E	Automotive Emissions and Control
2	UAU572E	Product Design and Development
3	UAU575E	Computer Graphics
4	UAU576E	Vehicle Transport Management

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

Basveshwar Engineering College, Bagalkote

Department of Automobile Engineering

Scheme of Teaching and Evaluation (Academic Year 2021 - 2022)

VI Semester BE

Sl.	Subject Code	Subject Title	Credits	Но	urs/ W	eek	Exam	ination I	Marks
No	Subject Code	Subject The	Creuits	L	Т	Р	CIE	SEE	Total
1.	UAU621C	Automotive Engine Component Design	4	4	0	0	50	50	100
2.	UAU622H	Engineering Economics	3	3	0	0	50	50	100
3.	UAU623C	Automotive Electrical Systems	3	3	0	0	50	50	100
4.	UAUXXXE	Dept. Elective - II	3	3	0	0	50	50	100
5.	UAUXXXN	Open Elective - I	3	3	0	0	50	50	100
6.	UAU627L	Automotive CAD Laboratory	1.5	0	0	3	50	50	100
7.	UAU638L	Automotive Power Train and Electrical Servicing Lab	1.5	0	0	3	50	50	100
8.	UHS003N	Career Planning and Professional Skills	1	0	0	3	50	50	100
9.	UAU610P	Mini Project	2	0	0	2	50	50	100
	·	Total	22	16	0	11	450	450	900

Department Electives – II

Sl. No	Code	Subjects
1	UAU651E	CAD/CAM
2	UAU653E	Automotive Air Conditioning
3	UAU654E	Advanced Automotive Materials
4	UAU655E	Diesel Engine Management System and
	01100002	Components

UAU523H	Entrepreneurship and Industrial Management	Credits: 03
L:T:P - N _L :3 N _T :0 N _P 0	Entrepreneursmp and industrial management	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

MANAGEMENT: Introduction - Meaning - nature and characteristics of Management, Scope and functional areas of management - Management as an art or science, art or profession Management & Administration Roles of Management, Levels of Management, Development of Management Thought - early management approaches - Modern management approaches.

UNIT-I

UNIT-II

UNIT-III

UNIT-IV

PLANNING: Nature, importance and purpose of planning process - Objectives - Types of plans (Meaning only) - Decision making – Importance of planning - steps in planning & planning premises - Hierarchy of plans.

ORGANISING AND STAFFING: Nature and purpose of organization -Principles of organization - Types of organization - Departmentation -Committees – Centralization Vs Decentralization of authority and responsibility - Span of control - MBO and MBE (Meaning only) Nature and importance of Staffing - Process of Selection & Recruitment (in brief).

DIRECTING & CONTROLLING: Meaning and nature of directing - Leadership styles, Motivation Theories, Communication - Meaning and importance – Coordination, meaning and importance and Techniques of Co - ordination. Meaning and steps in controlling - Essentials of a sound control system - Methods of establishing control (in brief)

ENTREPRENEUR: Meaning of Entrepreneur; Evolution of the Concept, Functions of an Entrepreneur, Types of Entrepreneur, Entrepreneur – an emerging Class. Concept of Entrepreneurship - Evolution of Entrepreneurship, Development of Entrepreneurship; Stages in entrepreneurial process; Role of entrepreneurs in Economic Development; Entrepreneurship in India; Barriers to entrepreneurship.

SMALL SCALE INDUSTRY: Definition; Characteristics; Need and rationale: Objectives; Scope; role of SSI in Economic Development. Advantages of SSI Steps to start an SSI – Government policy towards SSI; Different Policies of S.S.I.; Government Support for S.S.I. during 5 year plans, Impact of Liberalization, Privatization, Globalization on S.S.I., Effect of WTO/GATT, Supporting Agencies of Government for S.S.I., Meaning; Nature of Support; Objectives; Functions; Types of Help; Ancillary Industry and Tiny Industry (Definition only)

INSTITUTIONAL SUPPORT: Different Schemes; TECKSOK; KIADB; KSSIDC; KSIMC; DIC Single Window Agency: SISI; NSIC; SIDBI; KSFC.

PREPARATION OF PROJECT: Meaning of Project; Project Identification; Project Selection; Project Report; Need and Significance of Report; Contents; formulation; Guidelines by Planning Commission for Project report; Network Analysis; Errors of Project Report; Project Appraisal. Identification of Business Opportunities: Market Feasibility Study; Technical Feasibility Study; Financial Feasibility Study & Social Feasibility Study.

Reference Books *

TEXTBOOKS:

1. Principles of Management - P.C. Tripathi, P.N. Reddy; Tata McGraw Hill,

2. Dynamics of Entrepreneurial Development & Management - Vasant Desai Himalaya Publishing House

3. Small Business Enterprises - Poornima M Charantimath – Pearson Education - 2006 (2 & 4)

REFERENCE BOOKS:

1. Management Fundamentals - Concepts, Application, Skill Development Robert Lusier - Thomson

10 Hrs.

10 Hrs.

10 Hrs.

10 Hrs.

Entrepreneurship Development - S S Khanka - S Chand & Co
 Management - Stephen Robbins - Pearson Education /PHI -17th Edition, 2003

- 1. Assess the scope and significance of management and its principles
- 2. Illustrate the importance of planning and decision making
- 3. Demonstrate the communication skills to various Industrial fields
- 4. Develop entrepreneurial qualities to establish small scale Industry
- 5. Identify and develop the criterions for formulating project report
- 6. Evaluate the schemes to build business enterprise

Course Outcomes		Programme Outcomes (POs)										Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	2	1	1	2		2	2	2	2	1	1	2	2
CO2	2	3	2	1	1	2		2	2	2	2	1	1	2	2
CO3	2	3	2	1	1	2		2	2	2	2	1	2	2	2
CO4	1	3	2	1	1			2	2	2	2	1	1	2	2
CO5	1	3	2	1	1			2	2	2	2	1	1	2	2
CO6	2	3	2	1	1	2		2	2	2	2	1	1	2	2

UAU524C	AUXILIARY SYSTEMS FOR AUTOMOTIVE	Credits: 03
L:T:P - N _L :3 N _T :0 N _P 0	ENGINE	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

CARBURETION: Carburetor principle, properties of air-petrol mixtures, mixture requirements for steady state and transient operation, mixture formation studies of volatile fuels, design of elementary carburetor, chokes, automatic chokes, effects of altitude on carburetion, carburetor for 2 - stroke and 4 - stroke engines, carburetor systems for emission control. Fuel flow systems for SI engines.

GASOLINE INJECTION: Petrol injection; advantages, disadvantages, Lucas petrol injection system, mechanical, pneumatic and electronic fuel injection systems, types. Performance and exhaust emissions of Gasoline Direct Injection (GDI) engine. Mixture and operation modes, fuel supply and engine management of GDI.

AIRCRAFT FUEL SYSTEMS: Basic fuel systems characteristics and functions, fuel properties and environment.

UNIT-II **DIESEL FUEL INJECTION:** Cleaning systems, transfer pumps, injection pumps, injectors and nozzles types, functions and necessities, fuel injection pump principle, ratio of piston displacement to fuel charge volume, delivery characteristics, injection lag, pressure waves in fuel lines, fuel pump and governors - types, constructional features and operation, factors influencing fuel spray atomization, penetration and dispersion of diesel and heavy oils and their properties, rate and duration of injection, fuel line hydraulics.

CRDI injection: Operating concept, design, control and regulation for cars and CVs.

Diesel spray characteristics: Macroscopic; front penetration, cone angle, liquid length.

Microscopic characteristics; droplet size and distribution.

UNIT-III

MANIFOLDS AND MIXTURE DISTRIBUTION: Intake system components: Air filter, intake manifold with mixture distribution, discharge coefficient, pressure drop, exhaust system components: exhaust manifold and exhaust pipe, spark arresters, waste heat recovery, exhaust mufflers, type of mufflers, exhaust manifold expansion.

COOLING SYSTEM: Necessity, variation of gas temperature, areas of heat flow, heat transfer, piston and cylinder temperature, heat rejected to coolant, quantity of water required. Cooling system: air cooling, water cooling, thermodynamics of forced circulation, water pumps, thermostats, pressurized water cooling, regenerative cooling. Comparison of air and water cooling. Radiators - types, cooling fan - power requirement, anti-freeze solution.

UNIT-IV

LUBRICATION SYSTEM: Lubricants, lubricating systems - types, lubrication of piston rings, bearings, oil consumption, oil cooling. Heat transfer coefficients, liquid and air cooled engines, coolants, additives and lubricity improvers, concept of adiabatic engines, oil filters, pumps, crankcase ventilation - types.

SUPERCHARGERS: Introduction, purpose, thermodynamic cycle, effect on the performance, limits of supercharging for petrol and diesel engines, modifications of an engine for super charging; methods of super charging, compressor design, performance measures and mapping, engine matching.

TURBOCHARGERS: Introduction, merits of turbochargers in diesel and gasoline engines, basic structure and functionality, turbocharger performance, engine/turbochargers matching basics, advanced engine requirements and turbo technologies.

Reference Books *

TEXTBOOKS:

1. A Course in Internal Combustion Engines - Mathur, M.L., and Sharma, R.P., Dhanpat Rai Publications (P) Ltd., 1998.

2. Automobile Engineering Vol I & II - Kirpal singh, Standard Pub, New Delhi, 2004

10 Hrs.

10 Hrs.

10 Hrs.

10 Hrs.

UNIT-I

3. Internal Combustion Engine - Ramalingam, K.K, ScitechPublication (India) Pvt.Ltd.2000.

REFERENCES BOOKS:

- 1. A Course in Internal Combustion Engines Domkundwar, V.M, Dhanpat Rai and Co., 1999.
- 2. Internal Combustion Engines Ganesan, V., Tata McGraw-Hill Book Co., 2002.

- 1. Demonstrate the working of carburetors and petrol injections systems with its utility
- 2. Illustrate the types and characteristics of diesel injection systems
- 3. Elucidate the necessity and types of cooling systems
- 4. Enumerate manifolds and mixture distribution for intake and exhaust systems
- 5. Suggest lubricants and types of lubrication systems adopted in vehicles
- 6. Evaluate the scope and significance of turbo charging and its patterns

Course Outcomes		Programme Outcomes (POs)											0	Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	3	3	3	1	1						3	2	1	2		
CO2	3	3	3	3	1	1						3	2	1	2		
CO3	3	3	3	3	1							3	2	1	2		
CO4	3	3	3	3	1							3	2	1	2		
CO5	3	3	3	3	1							3	2	1	2		
CO6	3	3	3	3	1	1						3	2	1	2		

UAU532C	Design of Power Train and Suspension	Credits: 03
L:T:P - N _L :3 N _T :0 N _P 0	System	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	10 Hrs.
 CRITERIA FOR VEHICULAR SYSTEM DESIGN: Vehicle load, Road, Wind and Gradien Expectancy curves and Performance curves. Power and torque of propulsion, Driving Power and to Power and torque of the Propeller shaft, Output power and torque at fly wheels, Graphical represexpectancy curves, Starting torque, Load-speed characteristics and performance curves (No de problems). DESIGN AND DEVELPOMENT OF CLUTCH ASSEMBLY FOR DIFFERENT TYPES OF POWER TRAINS:-Design and Development of clutch assembly using the vehicular design data methods for the different types of vehicles, Calculations of required torque and BHP to be transmic clutches: - single plate, multi plate and cone clutches, selection criteria for the clutches. Analys stresses, forces acting on clutch assembly and components (No derivation only problems). Clutch assembly: clutch plates, pressure plates, springs, input and output shafts, rivets nuts and plates, frictional materials and their selection criteria, materials used for various components. 	orque, Output esentations of crivation only VEHICLE ta calculation itted, types of ses of various
UNIT-II	10 Hrs.
DESIGN AND DEVELPOMENT OF GEAR TRAINS AND GEAR BOXES FOR DIFFERE OF VEHICLE POWER TRAINS:- Design and Development of gear trains using the vehicula calculation methods for the different types of vehicles, Calculations of required torque and transmitted, types of gear boxes, gear trains and gears, selection criteria, transmission efficiency selection of different gear ratios in gear boxes, calculations of gear train dimensions, gear ratios, di gear shafts and gears etc (No derivation only problems). LUBRICATION AND BEARINGS: Lubricants and their properties, mechanisms of lubric modulus, coefficient of friction, minimum oil film thickness, heat generated, heat dissipated, bear design of journal bearing and thrust bearing (No derivation only problems). TYPES OF BRAKES : Single block and simple band brakes.	r design data BHP to be y, criteria for iameter of the cation bearing
UNIT-III	10 Hrs.
DESIGN AND DEVELPOMENT OF CONVENTIONAL TRANSMISSION SYST. DIFFERENT TYPES OF TWO WHEELER AND THREE WHEELERS: -Design and Develor trains using the vehicular design data calculation methods for the different types of vehicles, C required torque and BHP to be transmitted, types of conventional transmission systems:-belts rope force and stress analyses, calculations of dimensions for wire ropes. Belts:- types, Flat belts: ler section, selection of v-belts, wire ropes and chains for automotive and other applications (No c problems). DESIGN AND DEVELPOMENT OF PROPELLER SHAFTS FOR DIFFERENT TY VEHICLE POWER TRAINS: -Design and Development of propeller shaft using the vehicular calculation methods for the different types of vehicles, Calculations of required torque and transmitted, Types of propeller shaft, selection criteria, types of joints used (No derivation only problems)	opment of gea Calculations o es and chains ngth and cross derivation only YPES OF design data BHP to be

UNIT-IV10 Hrs.SPRINGS: Types of springs, stresses in helical coil springs of circular and non-circular cross sections. Tension
and compression springs, springs under fluctuating loads, leaf Springs: stresses in leaf springs. Equalized

stresses, energy stored in springs, torsion, Belleville and rubber springs. **DESIGN AND DEVELPOMENT OF REAR AXEL GEAR TRAINS FOR DIFFERENT TYPES OF VEHICLE POWER TRAINS:-**Design and Development of rear axle gear trains using the vehicular design data calculation methods for the different types of vehicles, Calculations of required torque and BHP to be transmitted, Types of gear trains, axle shaft design, gear train selection criteria, rear axle gear ratio calculations and selection criteria

Reference Books *

DESIGN DATA HAND BOOKS:

- 1. Design Data Hand Book K. Lingaiah, McGraw Hill, 2nd Ed.2003.
- 2. Design Data Hand Book K. Mahadevan and K.Balaveera Reddy CBS Publication
- 3. Machine Design Data Hand Book H.G. Patil, ShriShashiPrakashan, Belgaum.

TEXTBOOKS:

- 1. **Mechanical Engineering Design -** Joseph E Shigley and Charles R.Mischke. McGraw Hill International edition.
- 2. Introduction engineering system design method V. Gupta and P. Murthy
- 3. Automotive Mechanics N. K. Giri
- 4. Machine Design Trika

- 1. Analyze the concept of engineering system design and formulate design aspects of curved beams
- 2. Recommend a suitable spring for various applications
- 3. Analyze the gear mechanisms and its applications to automobiles.
- 4. Evaluate the design criterion for clutches and brakes its applications
- 5. Formulate the materials to design and analyze the various types of bearings
- 6. Design and develop the belts, ropes and chains.

Course Outcomes		Programme Outcomes (POs)											Program Specific Outcomes (PSOs)			
	1	2 3 4 5 6 7 8 9 10 11 12										1	2	3		
CO1	3	2	3	1		1				1	1	1	1	2	2	
CO2	3	2	3	2		1				1	1	1	1	2	2	
CO3	3	2	3	2		1				1	1	1	1	2	2	
CO4	3	2	3	2		1				1	1	1	2	2	2	
CO5	3	2	3	2		1				1	1	1	1	2	2	
CO6	3	2	3	2		1				1	1	1	2	2	2	

UAU541C	HEAT TRANSFER	Credits: 03
L:T:P - N _L :3 N _T :0 N _P 0		CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	10 Hrs.
INTRODUCTORY CONCEPTS AND DEFINITIONS: Modes of heat transfer; basic 1	
conduction, convection, and radiation heat transfer; thermal conductivity; convective heat trans radiation heat transfer coefficient; combined heat transfer mechanism.	
CONDUCTION : Basic equations, general form of one dimensional heat conduction equation cylindrical and spherical coordinates. Boundary conditions of first, second and third kinds; illust	
on mathematical formulation of conduction problems.	
ONE-DIMENSIONAL STEADY STATE CONDUCTION : Steady state conduction in a slab and in a sphere without heat generation; overall heat transfer coefficient for a composite me	
contact resistance; critical thickness of insulation.	dium; mermai
	10 IIma
UNIT-II	10 Hrs.
FINS: Steady state conduction in fins of uniform cross section long fin, fin with insulated the convection at the tip; fin efficiency; conduction in solids with variable thermal conductivity. ONE-DIMENSIONAL TRANSIENT CONDUCTION : Conduction in solids with negli	-
temperature gradients (lumped system analysis); use of transient temperature charts (Heisler	's charts) for
transient conduction in slab, long cylinder and sphere.	
UNIT-III	10 Hrs.
CONCEPTS AND BASIC RELATIONS IN BOUNDARY LAYERS: Flow over a body - velocity	boundary layer;
laminar and turbulent layers, critical Reynolds number; general expressions for drag coefficient	and drag force,
thermal boundary layer.	1. 1.0.
FORCED AND FREE CONVECTION : Physical significance of Reynolds, Prandtl, Nusse numbers. Use of various correlations for hydrodynamically and thermally developed flows; use for flow over a flat plate, over a cylinder and numericals. Application of dimensional an	e of correlations
convection-physical significance of Grashoff number.	
UNIT–IV	10 Hrs.
HEAT EXCHANGERS: Classification of heat exchangers; overall heat transfer coefficient fouling factor; LMTD and NTU methods of analysis of heat exchangers. RADIATION HEAT TRANSFER: Thermal radiation; definitions of various terms used in transfer; Stefan - Boltzman law, Kirchoff's law, Planck's Law and Wein's displacement law, L radiation heat exchange between two parallel infinite black surfaces.	radiation heat
Reference Books *	
TEXTBOOKS: I) Heat Transfer by P.K. Nag Tata Mc Graw Hill 2002	
TEXTBOOKS:	
TEXTBOOKS: I) Heat Transfer by P.K. Nag Tata Mc Graw Hill 2002 2) Heat Transfer- A Basic approach by M Necats Osisik Mc Graw Hill International ed 1988 REFERENCE BOOKS:	
TEXTBOOKS: I) Heat Transfer by P.K. Nag Tata Mc Graw Hill 2002 2) Heat Transfer- A Basic approach by M Necats Osisik Mc Graw Hill International ed 1988 REFERENCE BOOKS: 1) Heat transfer a practical approaches by Yunus A Cengel Tata Mc Graw Hill 2002.	
 TEXTBOOKS: I) Heat Transfer by P.K. Nag Tata Mc Graw Hill 2002 2) Heat Transfer - A Basic approach by M Necats Osisik Mc Graw Hill International ed 1988 REFERENCE BOOKS: 1) Heat transfer a practical approaches by Yunus A Cengel Tata Mc Graw Hill 2002. 2) Principles of Heat Transfer by Kreith Thomas learning 200 1. 	
 TEXTBOOKS: I) Heat Transfer by P.K. Nag Tata Mc Graw Hill 2002 2) Heat Transfer - A Basic approach by M Necats Osisik Mc Graw Hill International ed 1988 REFERENCE BOOKS: 1) Heat transfer a practical approaches by Yunus A Cengel Tata Mc Graw Hill 2002. 2) Principles of Heat Transfer by Kreith Thomas learning 200 1. 3)Fundamentals of Heat and Mass Transfer by Frank. P. Incropera and David. P. Dewitt John W 	Viley
 TEXTBOOKS: I) Heat Transfer by P.K. Nag Tata Mc Graw Hill 2002 2) Heat Transfer - A Basic approach by M Necats Osisik Mc Graw Hill International ed 1988 REFERENCE BOOKS: 1) Heat transfer a practical approaches by Yunus A Cengel Tata Mc Graw Hill 2002. 2) Principles of Heat Transfer by Kreith Thomas learning 200 1. 3)Fundamentals of Heat and Mass Transfer by Frank. P. Incropera and David. P. Dewitt John W and Sons 4th ed 1995. 	Viley
 TEXTBOOKS: I) Heat Transfer by P.K. Nag Tata Mc Graw Hill 2002 2) Heat Transfer - A Basic approach by M Necats Osisik Mc Graw Hill International ed 1988 REFERENCE BOOKS: 1) Heat transfer a practical approaches by Yunus A Cengel Tata Mc Graw Hill 2002. 2) Principles of Heat Transfer by Kreith Thomas learning 200 1. 3)Fundamentals of Heat and Mass Transfer by Frank. P. Incropera and David. P. Dewitt John W 	Viley

- 1. Categorize the modes of heat transfer, boundary conditions, laws governing heat conduction and analyze conduction phenomenon.
- 2. Illustrate the solution to conductive heat transfer problems.
- 3. Analyze unsteady state heat conduction phenomenon and apply to solve numerical problems
- 4. Formulate the convective heat transfer phenomenon and its applications
- 5. Evaluate the utility of heat exchangers and its analysis to solve numerical problems
- 6. Describe radiation heat exchange phenomenon and its analysis

Course Outcomes		Programme Outcomes (POs)										0	Program Specific Outcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	1									2	1	2	2
CO2	3	2	2									2	1	2	2
CO3	3	2	2									2	1	2	2
CO4	3	2	2									2	2	2	2
CO5	3	2	2									2	1	2	2
CO6	3	2	2									2	2	2	2

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

UAU571E
L:T:P - N _L :3 N _T :0 N _P 0
Total Hours/Week: 03

AUTOMOTIVE EMISSIONS AND CONTROL

(ELECTIVE)

UNIT-I	10 Hrs.
INTRODUCTION: Historical background, Euro norms, air quality standards. Effect of air pollu	tion: effect on
humans, animals and plants. Smog formation and its effects.	
GENESIS AND FORMATION OF POLLUTANTS: Vehicle emissions; sources- evaporative,	-
exhaust pipe. Unburnt hydrocarbons, carbon monoxide, oxides of nitrogen, particulate emission of	f both SI and
CI engines. Diesel smoke; types and reasons of smoke, mechanism of smoke formation. Thermody	ynamics state
of burned gases, flame quenching combustion chamber deposits, soot and particulate formation, cl	haracteristics
and composition of particulates. Effect of engine design and operating variables. Emission test pro-	ocedures and
standards: test cycles for light and medium duty vehicles, USEPA emission test cycles, European	emission test
procedure, types of emission driving cycle, motor cycle emission standards.	
UNIT–II	10 Hrs.
INFLUENCE OF GASOLINE AND DIESEL PROPERTIES ON EMISSION: Properties	like density,
olefin and aromatic content, volatility, octane number, additives, viscosity, distillation interval, co	etane number,
sulphur content on emissions. Emission control methods: Evaporative emission control; char	coal canister.
Positive Crankcase Ventilation (PCV).	
EXHAUST EMISSION CONTROL : Design modifications: lean burn strategies, compression r	-
size and combustion chamber shape, variable valve timing and lift, variable swept volume, dow	
pressure charging, faster warm-up, heated air systems. Exhaust Gas Recirculation(EGR); contro	l and related
systems.	
UNIT–III	10 Hrs.
ADD-ON SYSTEMS FOR TREATMENT OF EMISSION WITHIN ENGINE: Air inject	
reactor, catalytic converter. Catalytic converter: catalysts, substrate, converter housing, oxidation	
catalyst, two and three way converter. Catalyst technology for control of cold start, catalyst a	
Gasoline direct injection stratified charge engines; air motion and mixture formation in the	cylinder, fuel
injection and air fuel ratio control, emissions of gasoline direct injection engines. OBD systems.	10 II
UNIT-IV	10 Hrs.
INSTRUMENTATION FOR POLLUTION MEASUREMENT: NDIR analyzers, gas chromat	• •
apparatus, flame ionization detectors, chemilumiscence, smoke measurement; principle, Hartridg smoke meter.	ge and Bosch
CI ENGINE EMISSION CONTROL TECHNOLOGY : Fuel injection variables, high injection	on pressures
high pressure distributor pumps, electronic unit injectors, common rail fuel injection systems,	
	-
icharono calalvine treatment these Particulate Fillers (TPF), material substrates mesel e	EGR, turbo
charging, catalytic treatment, Diesel Particulate Filters (DPF); material, substrates, diesel of	EGR, turbo
treatment with metal substrates.	EGR, turbo
	EGR, turbo
treatment with metal substrates. Reference Books * TEXTBOOKS:	EGR, turbo
treatment with metal substrates. Reference Books * TEXTBOOKS: 1. Theory of IC engines: Mathur and Sharma.	EGR, turbo
treatment with metal substrates. Reference Books * TEXT BOOKS: 1. Theory of IC engines: Mathur and Sharma. 2. Automotive Mechanics: William H Crouse.	EGR, turbo
treatment with metal substrates. Reference Books * TEXTBOOKS: 1. Theory of IC engines: Mathur and Sharma.	EGR, turbo
treatment with metal substrates. Reference Books * TEXTBOOKS: 1. Theory of IC engines: Mathur and Sharma. 2. Automotive Mechanics: William H Crouse.	EGR, turbo

1. Assess the effect and conduct risk analysis of air pollution.

- 2. Analyze, interpret and compare the sources and formation of various emissions in gasoline engines.
- 3. Discuss and differentiate the influence of fuel properties on emissions.
- 4. Carry out the emission control measures for SI engines.
- 5. Evaluate the formation and controlling of emissions in CI engines.
- 6. Analyze and interpret the instrumentation utilized in measurement of emissions.

Course Outcomes			Р	rog	ram	me	Out	con	nes	(POs))		0	Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	2	1	2		2	3	1		2		1					
CO2	3	2	1	2		2	3	1		2		1					
CO3	3	2	1	2		2	3	1		2		1					
CO4	3	2	1	2		2	3	1		2		1					
Co5	3	2	1	2		2	2	1		2		1					
Co6	3	2	1	1	2	2	1	1		2		1					

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

UAU572E
L:T:P - N _L :3 N _T :0 N _P 0
Total Hours/Week: 03

PRODUCT DESIGN AND DEVELOPMENT

Credits: 03	
CIE Marks: 50	
SEE Marks: 50	

UNIT-I	10 Hrs.
INTRODUCTION: Characteristics of successful product development, design and development	t of products,
duration and cost of product development, the challenges of product development.	
DEVELOPMENT PROCESSES AND ORGANIZATIONS: Generic development pro-	
development: the front-end process, adopting the generic product development process, AMF process, product development organizations, the AMF organization.	development
PRODUCT PLANNING : Product planning process, identify opportunities. Evaluate and priori	tize projects
allocate resources and plan timing, complete pre project planning, reflect all the results and the proce	
UNIT-II	10 Hrs.
IDENTIFYING CUSTOMER NEEDS : Gather raw data from customers, interpret raw dat	
customer needs, organize the needs into a hierarchy, establish the relative importance of the needs the results and the process.	and reflect on
PRODUCT SPECIFICATIONS : What are specifications, when are specifications established target specifications, setting the final specifications.	_
CONCEPT GENERATION: Activity of concept generation, clarify the problem, search exter	nally, search
internally, explore systematically, reflect on the results and the process.	-
UNIT–III	10 Hrs.
format, communicate the concept, measure customer response, interpret the result, reflect the r process. PRODUCT ARCHITECTURE : What is product architecture, implications of the architecture, er architecture, variety and supply chain considerations, platform planning, related system level design INDUSTRIAL DESIGN : Assessing the need for industrial design, the impact of industrial desi design process, managing the industrial design process, assessing the quality of industrial design. UNIT-IV DESIGN FOR MANUFACTURING : Definition, estimation of manufacturing cost, reducing components, assembly, supporting production, impact of DFM on other factors. PROTOTYPING : Prototyping basics, principles of prototyping, technologies, planning for prototyp PRODUCT DEVELOPMENT ECONOMICS : Elements of economic analysis, base case fins Sensitive analysis, project trade-offs, influence of qualitative factors on project success, qualitative a MANAGING PROJECTS : Understanding and representing task, baseline project planning, a projects, project execution, postmortem project evaluation.	stablishing the issues. gn, industrial 10 Hrs. g the cost of pes. ancial mode. nalysis.
Reference Books *	
TEXTBOOK:	
1.Product Design and Development - Karl.T.Ulrich, Steven D Eppinger - Irwin McGrawHill - 2000.	
REFERENCE BOOKS:	
1. Product Design and Manufacturing - A C Chitale and R C Gupta, PH1, - 3 rd Edition, 2003.	
2. New Product Development - Timjones. Butterworth Heinmann -Oxford. UCI -1997	
 Product Design for Manufacture and Assembly - Geoffery Boothroyd, Peter Dewhurst and Winst – 2002 	on Knight

Course	Outcomes**
1.	Understand the necessity of new product development and problems encountered in Developing new products.
2.	Know the role of aesthetic in products.
3.	Able to use different types of models designed by industrial engineer.
4.	Able to select the different materials based on the functions of the product.
5.	The ergonomic factors influencing the success of the product.
6.	Know how to add value to the products.

Course Outcomes	Programme Outcomes (POs)									Program Specific Outcomes (PSOs)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3	1	1	1	1	2	1	1	2	1			
CO2	3	2	3	1	1	1	1	1		1	2	1			
CO3	3	2	2	1	1	1	1	2		1	2	1			
CO4	3	2	2	1	1	1	1	1		1	2	1			
CO5	3	2	3	1	1	1	1	1	1	1	2	1			
CO6	3	2	3	1	1	1	1	1	1	1	2	1			

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

myly)

UAU575E	COMPUTER GRAPHICS	Credits: 03
L:T:P - N _L :3 N _T :0 N _P 0		CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	10 Hrs.
	and clipping
representation of points, lines, line drawing algorithms: DDA algorithm, Bresenham's integer l Bresenham's circle algorithm, mid point line and circle, polygon filling algorithms: scan con	
filling, scan line algorithm. Viewing transformation, clipping points, lines, text, polygon, Cohen-S	
clipping, Sutherland - Hodgmen algorithm.	
UNIT–II	10 Hrs.
TWO DIMENSIONAL TRANSFORMATIONS: Representation of points, transformation	
reflection, scaling, combined transformations, translations and homogeneous coordinate	
interpretation of homogeneous coordinates, over all scaling, points at infinity, rotation about an a reflection through an arbitrary line.	rollrary point,
UNIT-III	10 Hrs.
THREE DIMENSIONAL TRANSFORMATIONS: Three dimensional transformations and p	
transformation matrix: general matrix, translation, scaling, shearing, rotation, reflection	
transformations, rotation about an axis parallel to coordinate axis, rotation about an arbitrary	
reflection through an arbitrary plane, orthographic, parallel projection transformations, one projections - one point, two point and three point.	s, perspective
UNIT-IV	10 Hrs.
PLANE AND SPACE CURVES CURVE: Plane and space curves curve representation, n	
curves, parametric curves, parametric representation and generation of line, circle, ellipse, parabo	
generation of circle, ellipse, parabola, hyperbola, cubic spline, normalized cubic splines, Bezier cu	
function, properties, generation, B-spline curves- Cox-de Boor recursive formula, properties, open	uniform basis
functions, non-uniform basis functions, periodic B-spline curve.	
Reference Books *	
TEXTBOOKS:	
1. Ibraham Zeid, "CAD/CAM-Theory and Practice" McGraw Hill, 2006	
2. Rogoer's Adams, "Mathematical Elements for Computer Graphics", McGraw Hill. 1990 Reference	ce
Reference Books:	
1. Xiang Z, Plastock, R. A, Computer Graphics, Schaums outlines, McGraw Hill. 2007.	
2. Foley, Van- Damn, Finner and Hughes, "Computer Graphics", principles and practice, Addison W	Vesley. 2000
3. Sinha AN., Udai A D., Computer Graphics, Tata McGraw Hill, 2008.	
Course Outcomes**	
1. To understand the fundamental concepts of graphics with suitable commands	
2. To apply comprehensive transformation techniques of computer graphics	
2. To know and draw the grantion of two and these dimensional transformations	
 3. To know and draw the creation of two and three dimensional transformations 4. To know and analyze plane and space curves 	

Course Outcomes		Programme Outcomes (POs)									Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3	2	2					1		1	1	2	1
CO2	3	3	2	2	2					1		1	1	2	1
CO3	3	3	2	2	2					1		1	1	2	1
CO4	3	2	3	2	2					1		1	1	2	1

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Jung

UAU576E
L:T:P - N _L :3 N _T :0 N _P 0
Total Hours/Week: 03

VEHICLE TRANSPORT MANAGEMENT

Credits: 03	
CIE Marks: 50	
SEE Marks: 50	

UNIT-I	10 Hrs.						
INTRODUCTION: Historical background, the growth of a network, trams, trolley buses, buses subsidies. Motor vehicle act 1988. Maintenance - preventive, breakdown, overhauling - major, schedules and workshop, facilities, documentation, analysis and corrective maintenance schedules. ORGANIZATION AND MANAGEMENT: Forms of ownership, municipal undertakin	minor, repair						
undertaking, traffic, secretarial and engineering deportments, management, principle of transpo organization-centralized control, de-centralized control, staff administration: industrial relation, ad recruitment and training, drivers and conductors duties, training of drivers and conductors, fact punctuality, welfare, health and safety.	lministration,						
UNIT–II	10 Hrs.						
ROUTE PLANNING: Source of traffic, town planning, turning points, stopping places, shelt route, preliminary schedule test runs, elimination of hazards, factors affecting frequency, direc flow, community of interest, estimating, traffic volume, probable weekday travelers, passengers of periods of the day, estimated number of passengers, estimated traffic, possibility of single verses and frequency. TIMING, BUS WORKING AND SCHEDULES : Time table layout, uses of flat graph presentation, preparation of vehicle and crew schedule preparation of the duty roster, co-op employers, use of the vehicle running numbering determination of vehicle efficiency checking crew, duty arrangements.	tion of traffic during various s double deck method of peration with						
UNIT-III	10 Hrs.						
COLLECTIONS: Need, principles of collection, tickets, the way bill, stage by stage, bell punch system, bell graphic system, reduced ticket stocks will brew system, mechanical ticket machines, T.I.M and straight machines, Vero meter, one-man operation, two stream boarding, pre paid tickets, lenson parason coach tickets exchanges, the fare box, electronic ticket machines, box system personal and common stock flat fare platform control. FARE STRUCTURE : Basis of fares, historical background, effects of competition and control, calculating average zone system, concession fares, straight and tapered scale elastic and inelastic demand co-ordination of							
fares concessions fares changes for workman, standard layout of fare table, anomalies double booking inter							
availability through booking and summation, private hire charges.							
UNIT-IV	10 Hrs.						
OPERATING COST AND TYPES OF VEHICLES: Classification of costs, average speed, a supplementary costs, depreciation obsolescence, life of vehicles, sinking fund, factor affecting cost mile incidence of wages and overheads, 100 seats miles basis, average seating capacity, vehicles si	st per vehicles						

overs, types of vehicle economic considerations authorization of trolley, bus services, statuary procedure taxes and hire car.

PUBLIC RELATIONS DIVISIONS:

Dissemination of information, maintaining goodwill handling complaints, traffic advisory committees, local contractors co-operation with the press news and articles - facilities for visitors- forms of publicity - importance of quality - inter departmental liaison advertisements, sings, notice and directions general appearance of premises, specialized publicity. prevention of accidents: Emphasis of safe driving, annual awards, bonus encouragement, vehicle design, platform layout, location of stops, scheduled speed, route hazards, records, elimination of accident prone drivers.

Reference Books *

TEXTBOOKS:

1. Bus operation - L.D.Kitchen, Iliffe & Sons, London

2. Bus & coach operation - Rex W. Faulks, Butterworth Version Of 1987, London

REFERENCE BOOKS:

- 1. Compendium of transport terms Cirt,Pune
- 2. M.V. Act 1988 Central Law Agency, Allahabad
- 3. The elements of transportation R.J. Eaton
- 4. Goods vehicle operation C.S. Dubbar

Course Outcomes**

1. Analyze public transport in India and different forms of ownership.

2. Define and analyze the vehicle maintenance and its types and selection and roles of crew.

- 3. Define route planning process and application bus scheduling methods of bus scheduling and implementation.
- 4. Analyze fare structure and collection systems, their principles and compare various fare collection systems.
- 5. Define different operating cost and analyze for optimized transport and functions of PRO in public transport.
- 6. Analyze the prevention of accidents and future of road transport.

Course Outcomes		Programme Outcomes (POs) Program S Outcomes (-		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1		1					1	1	1		2	2	2	2
CO2	1	1						1	1	1		2	2	3	2
CO3	1	2						1	1	1		2	2	2	3
CO4	1	1	1					1	1	1		2	2	2	3
CO5	1	1	1					1	1	1		2	2	2	
CO6	1	1	1					1	1	1		2	2	2	3

- 1. Study of hand tools- sketching, materials used and their applications
- 2. Technical specifications of all types of automobile engines
- 3. Trouble shooting charts of all engine components
- 4. Note the specifications of given engines and component standard dimensions. Dismantle, inspect, clean and assemble of engine components of SI and CI engines(two and four stroke) of any commercial vehicles. Note procedure of dismantling and assembly; identify the major components, noting their functions and materials used. Measurement & comparison of major components dimension with standard specifications. Inspection for wear and tear, crack and brake down, identify the service requirements of engines such as decarbonoizing, degreasing, spark plug cleaning and adjusting, fuel injector cleaning etc.
- 5. Compression and vacuum test on diesel and petrol and diesel engines.
- 6. Study(Dismantling and assembly): Carburetors, fuel injection pumps, fuel filters, fuel pumps, turbochargers, cooling systems and components, lubrication system and components. Identify the location of above components in a vehicle and note their functions

Laboratory Assessment:

- 1. Each Laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE)
- 2. Allocation of 50 marks for CIE
 - Performance and journal write-up : Marks for each experiment = 30 marks/No. of proposed experiments.
 - One practical test for 20 marks. (5 write-up, 10 conduction, calculation, results etc., 5 viva-voce).
- 3. Allocation of 50 marks for SEE

- 1. Analyze the engine trouble shooting aspects and specifications of various vehicles
- 2. Able to demonstrate the dismantling and assembly of multi-cylinder of different engines with respective auxiliary systems.
- 3. Able to demonstrate the dismantling and assembly of two wheeler engines.
- 4. Conduct the testing of vacuum and compression test in engines and draw the inference.
 - 5. Dismantle, assemble and analyze working and fault diagnosis of fuel system elements like carburetor and fuel injection pump.

Course Outcomes		Programme Outcomes (POs)Program Specific Outcomes (PSOs)													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	1							1	1	1	2	1	2	1
CO2	3	1							1	1	1	2	1	2	1
CO3	3	1							1	1	1	2	1	2	1
CO4	3	1		1	1				1	1	1	2	1	2	1
CO5	3	1							1	1	1	2	1	2	1

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Jud

CIE Marks: 50 SEE Marks: 50

Total Hours/Week: 03

- Maintenance/service charts for different parts of chassis, suspension and transmission. 1.
- 2. Study of head light beam testing for two and four wheeler.
- 3. Braking distance test for four wheeler.
- 4. Study of tyre retreading, tubeless tyre puncture repairs, painting of vehicles.
- 5. Sketch the layout of a service station and bus depot mentioning the various equipments required including the space needed.
- 6. Study and practice on computerized wheel balancing machine, computerized wheel alignment machine, computerized engine analyzer.
- 7. Study of two wheeler performance on two wheeler chassis dynamometer.
- 1. 8.Study of electrical components like battery, alternator, regulator on electrical test bench
- 8. Study and demo of wind tunnel testing I) testing for pressure distribution ii) testing for lift, yaw, drag

Laboratory Assessment:

- 1. Each Laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE)
- 2. Allocation of 50 marks for CIE
 - Performance and journal write-up : Marks for each experiment = 30 marks/No. of proposed experiments.
 - One practical test for 20 marks. (5 write-up, 10 conduction, calculation, results etc., 5 vivavoce).
- 3. Allocation of 50 marks for SEE

- 1. To study the head light beam testing for two and four wheeler and braking distance
- 2. To know the process of tyre retreading, painting of vehicles and able to draw the layout of a service station and bus depot
- 3. To study and practice on computerized wheel balancing machine, computerized wheel alignment machine, computerized engine analyzer.
- 4. Study and demo of wind tunnel testing and know the various aspects

Course Outcomes	Programme Outcomes (POs)											gram Specific comes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1		1	1	1			1	1	1	1	1	2	1
CO2	2	1		1	1	2			1	1	1	1	1	2	2
CO3	2	1		1	1	2			1	1	1	1	1	2	1
CO4	2	1		1	1	1	1		1	1	1	1	2	2	1

UAU621C
L:T:P - N _L :4 N _T :0 N _P 0

AUTOMOTIVE ENGINE COMPONENT

DESIGN

Credits: 04

CIE Marks: 50 SEE Marks: 50

Total Hours/Week: 04

UNIT-I	13 Hrs.
ENGINE SELECTION CRITERIA: Road, wind and gradient resistance, starting torque	, load-speed
characteristics, expectancy curves and performance curves.	
CARBURETION: Air-fuel ratio, throat diameter, air and fuel flow rate, change in air-fuel ratio	o at altitude,
velocity of air at venture throat, pressure drop, mass flow of fuel.	
INJECTION: Injection in CI engines; volume of fuel injected, velocity and duration of injection, o injector, pressure difference.	rifice area of
DESIGN OF CYLINDER BLOCK, CRANK CASE AND CYLINDER HEADS: Cylinder he	ads. gaskets.
cylinder wear, water jacket, cylinder liners, crank case, oil sumps and cooling features.	, 8
Engine mountings, front and rear mountings, type of engine blocks, manifolds; types, inlet a	and exhaust
manifolds, dual manifolds, design of manifolds, mufflers; types, design.	
UNIT–II	13 Hrs.
DESIGN OF CYLINDER BLOCK, CRANK CASE AND CYLINDER HEADS: Cylinder heads, gas wear, water jacket, cylinder liners, valve seats. Crank case - general form of crank case, oil sump features, flywheel mountings, engine mountings, front and rear mountings. Production of er manifolds and mufflers - inlet and exhaust manifolds, mixture distribution, heating by exha manifolds, general design of manifolds, effect of firing order, mufflers, general design. DESIGN OF PISTON, PISTON RINGS, PISTON PIN: Piston temperatures, piston slap, com thermal expansion in pistons. Piston rings, forms of gap, stresses in piston rings, ring collapse, he piston ring selection, shape. Piston pin, locking of piston pins, length of piston. UNIT–III DESIGN OF CONNECTING ROD: Length of rod, cross section, buckling, drilled connecting rod bearing, offset connecting rods, effects of whipping, bearing materials, lubrication. DESIGN OF CRANK SHAFT: Balance weights, local balance, crankshaft proportions, oil hole crank shafts, balancing and torsional vibration analysis, vibration dampers, firing order, bearings, lubrication.	s and cooling ngine blocks, ust gas, dual pensation of at treatment, 13 Hrs. ls, piston pin es drilled in brication.
UNIT–IV	13 Hrs.
DESIGN OF FLYWHEEL : Necessity, capacity, mounting of flywheels, coefficient of fluctuat fluctuation of energy, maximum fluctuation of energy, energy stored in a flywheel, stresses, constru DESIGN OF VALVE AND VALVE MECHANISM : Angle of seat, operating condition	ction. s, operating
temperatures, valve cooling, sodium cooled valves, valve rotators, valve seats, valve guides, va	
valve clearance, valve timing, OHV, OHC, dual valves, types of valve operating mechanisms.	
component details, camshaft, drives of cams, cam types, tappets, automatic zero clearance tappet	s, push rods,
rocker arms and rocker shaft.	
Reference Books *	

Text Books:

- 1. High Speed Engines P.M.Heldt, Oxford & IBH, 1965
- 2. Auto Design R.B Gupta, Satya Prakashan, New Delhi 2002
- 3. Automotive mechanics- N.K. Giri

Reference Books:

- 1. A course in I.C. Engine Mathur & Sharma, Dhanput Rai & Sons, Delhi, 1994
- 2. Internal Combustion Engines-V Ganesan, Tata McGraw Hill, Delhi, 2002
- 3. Automobile Engineering Vol. II Kirpal Singh, Standard publications, New Delhi, 2004

4. Modern Petrol Engine - A.W.Judge, B.I. Publications. 1983

ours	e Outcomes**
1.	Correlate, analyze, and solve the vehicle design related problems.
2.	Formulate, analyze and estimate the expectancy curves and compare with performance curves.
3.	Analyze and solve the design problems of cylinder head, block and valves with live tim approach.
4.	Analyze and solve the design problems of piston assembly, connecting rod, crank shaft and flywheel with live time approach.
5.	Design engine and their components used in automobiles, aeronautical, locomotive and marine engines.
6.	Correlate, analyze, and solve the vehicle design related problems.

Course Outcomes	Programme Outcomes (POs)												rogram Specific utcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	1	1	1			2	1	1	1	2	3	2
CO2	3	3	3	1	1	1			1	1	1	1	2	2	2
CO3	3	3	3	1	1	1			2	1	1	1	2	3	2
CO4	3	3	3	1	1	1			1	1	1	1	2	3	2
CO5	3	3	3	1	1	1			2	1	1	1	2	2	2
CO6	3	3	3	1	1	1			2	1	1	1	2	2	2

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

UAU622H	
L:T:P - N _L :3 N _T :0 N _P 0)

ENGINEERING ECONOMICS

Credits: 03

CIE Marks: 50

SEE Marks: 50

Total Hours/Week: 03

UNIT-I

10 Hrs.

INTRODUCTION: Definition of various economic terms such as economic goods, utility, value, price, wealth, wants capital, rent and profit, laws of returns.

DEMAND AND SUPPLY: Law of diminishing utility and total utility. Demand schedule. Law of demand. Elasticity of demand, law of substitution, law of supply, supply schedule, elasticity of supply.

WAGES: Nominal and real wages, factors affecting real wages, theory of wages, difference in wages, methods of wage payment.

UNIT-II

10 Hrs.

MONEY AND EXCHANGE: Theory of exchange, barter, stock exchange, speculation money qualities of a good money, function of a money, classification of money, value of money, index number, appreciation and depreciation of money value, Gresham's law and its limitations.

TAXATION AND INSURANCE: Principle of taxation, characteristics of a good taxation system, kinds of taxes, and their merits and demerits, vehicle insurance, loss assessment.

INTEREST AND DEPRECIATION: Introduction, theory of interest, interest rate, interest from lender's and borrower's view point, simple and compound interest. Nominal and effective interest rates, interest formulae. Annual compounding, annual payments and continuous compounding annual payment, simple numerical problems. Need for depreciation causes of depreciation life and salvage value methods of depreciation, simple numerical problems.

COSTS: Standard costs estimated cost, first cost, fixed cost, variable costs, incremental cost, differential cost, sunk and marginal cost, breakeven and minimum cost analysis, simple numerical problems.

UNIT-III

COST ACCOUNTING: Introduction, objectives of cost accounting, elements of cost material cost, labour cost, and expenses, allocation of overheads by different methods, simple numerical problems.

10 Hrs.

10 Hrs.

BASIS FOR COMPARISON OF ALTERNATIVES: Present worth methods, capital recovery methods, and rate of return method, simple numerical problems.

BOOK KEEPING AND ACCOUNTS: Introduction, necessity for book keeping, single entry and double entry, ledger, trial balance, final accounts, trading accounts, profit and loss accounts, balance sheet, simple problems.

ledger, that balance, final accounts, trading accounts, profit and loss accounts, balance

Reference Books *

TEXT BOOKS:

- 1. Engineering Economy TARACHAND, 2000
- 2. Engineering Economy RIGGS J.L., McGraw Hill, 2002
- 3. Engineering Economy THUWSEN H.G., PHI, 2002

REFERENCE BOOKS:

- 1. Industrial Engineering and Management O.P KHANNA, Dhanpat Rai & Sons.
- 2. Financial Management -I.M PANDAY, Vikas Publishing House
- 3. Engineering Economy Paul Deoarmo, Macmillan Pub, Co., 2001
 - 4. Mechanical Estimation and Costing D. Kannappan.

Cours	e Outcomes**
1.	Define various economic terms and analyze the basic concepts of price, product and market and correlate them.
2.	Know how of banking, stock exchange, insurance, wages, their role in economics of business.
3.	Classify taxes and depreciation and monetary system their role in economics and methods to evaluate them.
4.	Define various costs, cost accounting procedure and its implementation in business enterprises for assessment.
5.	Concept of interest its significance, analysis of cash flow methods and apply them to evaluate investment options.
6.	Define book keeping approaches, their role and implementation in assessments.

Course Outcomes	Programme Outcomes (POs)													gram Specific comes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	1	1	1	2		1		2	2	2	1	1	2	
CO2	2	2	1	1	1	2		1		2	2	2	1	1	2	
CO3	2	2	1	1	1	2		1		1	2	2	1	1	2	
CO4	2	2	1	1	1	2		1		1	2	2	1	2	2	
CO5	2	2	1	1	1	2		1		1	2	2	1	2	2	
CO6	2	2	1	1	1	2		1		2	2	2	1	2	2	

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

UAU623C
$L:T:P - N_L :3 N_T:0 N_P 0$
Total Hours/Week: 03

AUTOMOTIVE ELECTRICAL SYSTEMS

Credits: 03 CIE Marks: 50 SEE Marks: 50

UNIT-I

10 Hrs.

STORAGE BATTERY: Introduction, principle of lead acid cells, construction and elements, electrolyte and their preparation, specific gravity, capacity and efficiency, battery tests, battery ratings, chemical action in cell, direction of current flow, recharging batteries, temperature effect on battery characteristics, methods of charging. Working principles of Alkaline, Nickel - Cadmium, silver - zinc battery, Lithium batteries. Battery trouble shooting.

Networks and multiplexing. Other electric and electronic devices.

Vehicle security systems: seat belts, air bags.

INDICATING AND WARNING DEVICES AND DASH BOARD INSTRUMENTS: Fuel gauge, oilpressure gauge; balancing coil, thermostatic, electronic and digital gauges, water temperature gauge, speedometers; mechanical, electrical, digital. Warning lights; oil pressure, water temperature, horn, windscreen-wipers, signaling devices. Trouble shooting.

UNIT-II

10 Hrs.

GENERATOR / ALTERNATOR: Principle of generation of direct current, generator constructional details; commentators, principle of commutation, armature, field magnets, windings, brushes, wiring circuit of generators, types of generators, generator drives, cutout relay, ammeter. Construction of alternator, rectification, voltage regulation, testing of alternator. Alternator terminals, cooling, instrument panel. Charge indicators, charging system test, charging system service and fault diagnosis.

STARTER MOTOR AND DRIVES: Introduction, starting motor principle, torque and power requirements, starting motors and its characteristics. Starting motor drives. Starting system tests. Servicing starting motors. Starting motor trouble shooting.

UNIT-III

10 Hrs.

IGNITION SYSTEM: Ignition fundamentals, types of ignition systems and related components. Spark plugs; general considerations, characteristics, materials. Ignition timing; advance mechanism; centrifugal and vacuum. Ignition system tests, oscilloscope pattern. Setting ignition timing; types.

ELECTRONIC IGNITION: Pickup coil voltage pulse, high energy ignition system, electronic spark advance, optical photo diode distributor, distributors less ignition system, multiple coil ignitions, direct capacitor charge ignition. Distributor less ignition system, C.D.I, systems. Artificial intelligence.

Ignition system trouble shooting and trouble codes.

UNIT-IV

10 Hrs.

LIGHTING AND ELECTRICAL ACCESSORIES: Introduction, principle of automobile illumination, lightings, control of head light beam, head light dazzle, fog lamps, side and taillight, brake warning light, instrument and indicator lights, ignition warning light, direction indicators, parking light, fluorescent lighting. Automatic head lamp controls, fiber optic lighting, computer control lighting, distributed lighting, head lamp aiming. Lighting system trouble shooting and recent developments; L.E.D.

VENTILATION, HEATING AND AIR CONDITIONING: Passenger compartment heater, heater controls, heated air distribution, basic refrigeration cycle: refrigerant flow control valves, refrigerants, refrigerant oil. Types of air conditioner: manually controlled, automatically controlled and electronic automatic temperature control.

Reference Books *

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

TEXT BOOKS: 1. Automobile Engineering: Kirpal Singh

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

my

- 2. Automobile Mechanics : William H Crouse
- 3. Automotive Electrical equipments: P.L.Kohli

- 1. Elucidate the construction, working and elements of different batteries, electrical accessories and dash board instruments.
- 2. To know and analyze the construction and working of starting motors with different types of drives and its trouble shooting.
- 3. Expound the theory of the working of various ignition systems and their components, its trouble shooting with update of latest systems.
- 4. Able to illustrate the construction and working of charging system and its fault diagnosing methods and remedial techniques.
- 5. Analyze the principle of automobile illumination and different types lighting systems and allied electrical systems.
- 6. Able to construe the utility, scope and significance of automobile ventilating, safety and air condition systems.

Course Outcomes	Programme Outcomes (POs)												Program Specific Outcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	1	2	1				1	1	1	1	2	2
CO2	3	2	1	1	2	1				1	1	1	1	2	2
CO3	3	2	2	2	2	1				1	1	1	2	2	2
CO4	3	2	1	1	2	1				1	1	1	1	2	2
CO5	3	2	1	2	2	1				1	1	1	1	2	2
CO6	3	2	1	1	2	1				1	1	1	2	2	2

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

UAU651E	CAD/CAM	Credits: 03
L:T:P - N _L :3 N _T :0 N _P 0		CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I10 Hrs.INTRODUCTION: Role of computers in design and manufacturing. Influence of computers in manufacturing
environment. Product cycle in conventional and computerized manufacturing environment. Introduction to
CAD, Introduction to CAM. Advantages and disadvantages of CAD and CAM.UMADE FOOD
CADDesign and manufacturing environment. Introduction to
to the second se

HARDWARE FOR CAD: Basic hardware structure, working principles, usage and types of hardware for CAD - Input devices, output devices, memory, CPU, hardcopy and storage devices.

UNIT-II10 Hrs.COMPUTER GRAPHICS: Software configuration of a graphic system, function of graphics package,
construction of geometry, wire frame and solid modeling, geometry transformation - two dimensional and three
dimensional transformation, translation, scaling, reflection, rotation, CAD/CAM integration. Desirable
modeling facilities. Introduction to exchange of modeling data - basic features of IGES, STEP, DXF, DMIS
INTRODUCTION TO ROBOTICS: Introduction, robot configuration, robot motion, programming of

robots, end effectors work cell, control and interlock, robot sensor, robot applications.

10 Hrs.

10 Hrs.

NC, CNC, DNC TECHNOLOGIES: NC, CNC, DNC, modes, NC elements, advantages and limitations of NC, CNC. Functions of computer in DNC.

CNC TOOLING: Turning tool geometry, milling tooling system, tool presetting, ATC, work holding.

UNIT-III

CAM PROGRAMMING: Overview of different CNC machining centers, CNC turning centers, high speed machine tools.

UNIT-IV

CNC PROGRAMMING: Part program fundamentals, steps involved in development of a part program. Manual part programming, milling, turning, turning center programming.

INTRODUCTION TO FINITE ELEMENT ANALYSIS: Introduction, basic concepts, discretization, element types, nodes and degrees of freedom mesh generation, constraints, loads, preprocessing, application to static analysis.

Reference Books *

TEXT BOOKS:

- 1. CAD/CAM Principles and Application by P.N. Rao, Tata McGraw Hill.
- 2. CAD/CAM by Groover, Tata McGraw Hill.

REFERENCE BOOKS:

- 1. Introduction to the Design and Analysis of Algorithms S.E. Goodman, S.T. Headetmiemi, McGraw Hill Book Company – 1988.
- 2. Principles of Interactive Computer Graphics by Newman and Sproull, Tata McGraw Hill, 1995.
- 3. NC Machine Programming and Software Design Chno- Hwachang, Michel. A. Melkanoff, Prentice Hall, 1989.
- 4. Numetical Control and CAM Pressman RS and Williams JE, Johnwiley.
- 5. Computer Graphics by Steven Harrington, McGraw Hill Book Co.
- 6. CAD-CAM by Chris McMahon & Jimmie Browne Pearson education Asia 2001.
- 7. CAD/CAM Ibrahim Zeid, Tat McGraw Hill, 1999.
- 8. Computer Aided Manufacturing by P.N. Rao, N.K. Tewari and T.K. Kundra Tata McGraw Hill 1999.
- 9. Introduction to FEM T Chandra patta Ashok D Bebgundu.

1. List role of computers in design and manufacturing area and realize their significance.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

June

- 2. Define various devices used in CAD/CAM, their role in CAD/CAM activities.
- 3. Classify cad model and know-how of developing models using different approaches.
- 4. Develop programs to generate the drawings on computers and manufacture products on NC machines.
- 5. Classify the different types of robots and manufacturing systems, their features and application.
- 6. Define the stages in Finite Element Analysis and their need and significance.

Course Outcomes				Pro	gran	nme	Out	com	es (l	POs)				Program Specific Outcomes (PSOs)				
	1	1 2 3 4 5 6 7 8 9 10 11 12											1	2	3			
CO1	3	2	3	1	2	1				1	2	1	2	1	1			
CO2	3	2	3	1	2	1				1	2	1	2	1	1			
CO3	3	2	3	1	2	1				1	2	1	2	1	1			
CO4	3	2	3	1	2	1				1	2	1	3	2	1			
CO5	3	2	3	1	2	1				1	2	1	2	2	1			
CO6	3	2	3	1	2	1				1	2	1	2	1	1			

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

UAU653E
$L:T:P - N_L :3 N_T:0 N_P 0$

Total Hours/Week: 03

AUTOMOTIVE AIR CONDITIONING

Credits: 03

CIE Marks: 50

SEE Marks: 50

UNIT-I	10 Hrs.
AIR CONDITIONING FUNDAMENTALS : History of automotive air conditioning systems. If heating and ventilation. Basic theory of cooling, vapour compression refrigeration, alternative cyclical valve system, fixed office valve system, dual air-conditioning. Refrigeration and cooling; refrigeration, evaporation, condensation, heat transfer, refrigeration cyclication.	les, expansion
and flow control valves.	10.77
UNIT–II	10 Hrs.
AIR CONDITIONING COMPONENTS : Compressor, compressor clutch, types of air compressors, cycling and non cycling compressor, electrically driven compressor, conden drier/accumulator, expansion valve, fixed orifice valve, evaporator, anti-frosting devices, basic cont	ser, receiver- rol switches.
UNIT–III	10 Hrs.
AIR CONDITIONING CONTROLS : Electrical and electronic control, electrical principles actuators, testing of sensors and actuators, oscilloscope waveform sampling, multiplex wiring s and EOBD, ready wiring diagrams, automotive A/C manual control systems - case studies. Diagnostics and troubleshooting: initial vehicle inspection, temperature measurement, pressure testing, A/C system leak testing.	systems, OBD
UNIT-IV	10 Hrs.
 SERVICE AND REPAIR: Precaution, refrigerant, recovery, recycle and charging, system flushing, odour removal, retrofitting, replacement and adjustment of components, fixed orifice valve ENVIRONMENT AND LEGISLATION: Global warming, ozone layer, legislation. Ventilating the passenger compartment, heater controls, heated air distribution, heated wind powered ventilation, electronic automatic temperature control. Reference Books * 	e replace.
TEXTBOOKS:	
1. Automotive air conditioning and climate control: Steven Daley (Butterworth Heinmann, Elsevie	r)
2. Automotive mechanics – William Crouse.	
Course Outcomes**	
1. To understand the basic concepts of refrigeration and air - conditioning.	
2. Know-how on components vehicle air- conditioning system.	
3. To study the control systems in air - conditioning and trouble shooting.	
4. To study refrigerants, their environmental impact and legislation.	

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Course Outcomes				Prog	gran	nme	Out	com	es (l	POs)			Program Specific Outcomes (PSOs)			
	1 2 3 4 5 6 7 8 9 10 11 12													2	3	
C01	2	1	1	1	1	1	1			1		1				
CO2	2	1	1	1	1	1	1			1		1				
CO3	2	1	1	1	1	1	1			1		1				
CO4	2	1	1	1	1	1	1			1		1				

Juny

UAU654E
L:T:P - N _L :3 N _T :0 N _P 0

ADVANCED AUTOMOTIVE MATERIALS

Creans: 05	
CIE Marks: 50	
SEE Marks: 50	

Creditar 02

Total Hours/Week: 03

UNIT-I

10 Hrs.

INTRODUCTION TO ADVANCED MATERIALS: Composites and hybrids Sandwich materials, Metal matrix composites: automotive applications. Ceramic and glasses; automotive glazing, sustainable materials. Advanced composites.

UNIT–II

10 Hrs.

10 Hrs.

10 Hrs.

POLYMERS: Processing of polymers, components for noise and vibration isolation and control on automotive industry. Recycling of polymers and biopolymers and steel processing: formability of steel sheets and tailor welded blanks for automotive application. Thermoplastics, thermosets.

UNIT-III

CARBON FIBERS: Carbon-fibers-reinforced silicon carbide. Magnesium: Properties and automotive application for magnesium. New brake disc material - Elements of ceramic brake disc, material behaviour, material properties, advantages.

Titanium and Nickel: Properties and their automotive applications

BODY MATERIALS: Future trends in body materials; objectives and contents. Mechanical and physical properties of materials. Material selection for automotive body components.

Trimming of plastics. Insulating materials and sealing compounds.

Factors influencing material change in future, emission control and fuel systems.

Reference Books *

BOOKS: 1. Encyclopedia of automobile engineering (vol. 6)

- 1. Materials for automotive bodies Geoff Davis (B/H)
- 2. Encyclopedia of automobile engineering (vol. 4)
- 3. Automotive Hand book(9th Edition) Bosch(Wiley)

- 1. To understand the basic knowledge and use of advanced materials and composites in automotive engineering.
- 2. Know-how on polymers and its application in automotives.
- 3. To study the use and significance of carbon polymers.
- 4. To understand the future trends in body materials.

Course Outcomes				Prog	gran	nme	Out	com	es (I	POs)			Program Specific Outcomes (PSOs)			
	1	1 2 3 4 5 6 7 8 9 10 11 12												2	3	
CO1	2	1	1	2	1	1	1			1		1				
CO2	2	1	1	1	1	1	1			1		1				
CO3	2	1	2	1	1	1	1			1		1				
CO4	2	1	1	1	1	1	1			1		1				

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UAU627L	AUTOMOTIVE CAD LABORATORY	Credits: 1.5			
L:T:P - N _L :0 N _T :0 N _P 3		CIE Marks: 50			
Total Hours/Week: 03		SEE Marks: 50			

- Modeling Introduction. Development of 2D and 3D geometric modeling using anyone parametric software. Exercises on automotive components - 3D modeling (1 – 4 components) Softwares – Pro-E, CATIA, UNIGRPHICS etc.
- 2. Analysis FEA (Preprocessor, solver, post processor)
 - a) Exercise involving simple structures.
 - b) Validation of result with analytical solution.
- 3. Introduction to CNC programming(G codes & M codes) a)Turning b) Milling Simple Exercises (2 4 Nos.) using CNC Simulator.

Laboratory Assessment:

- 1. Each Laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE)
- 2. Allocation of 50 marks for CIE
 - a. Performance and journal write-up : Marks for each experiment = 30 marks/No. of proposed experiments.
 - b. One practical test for 20 marks. (5 write-up, 10 conduction, calculation, results etc., 5 viva-voce).

Allocation of 50 marks for SEE

- 1. Utilize the CATIA software commands to generate geometrical primitives and sketcher
- 2. Utilize the CATIA software commands to generate 2D and 3D models.
- 3. Able to convert, modify and develop solid and surface models for FEM solutions.
- 4. Develop program for generating component profile using NC programming for milling and turning jobs.

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)				Program Specific Outcomes (PSOs)			
	1	1 2 3 4 5 6 7 8 9 10 11 12													3		
CO1	3	1	1	1	3				1	1	1	2	1	2	1		
CO2	3	1	1	1	3				1	1	1	2	1	2	1		
CO3	3	1	1	1	3				1	1	1	2	1	2	1		
CO4	3	1	1	1	3				1	1	1	2	1	2	1		

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

AUTOMOTIVE POWER TRAIN AND

SEE Marks: 50

 UAU638L

 L:T:P - N_L :0 N_T:0 N_P 3

 Total Hours/Week: 03

- 1. Writing technical specifications and description of all types of chassis and transmission components of automobiles, including body and interiors (two wheeler, four wheeler and heavy vehicle one each)
- 2. Trouble shooting charts for major parts like clutch, gear box, differential, brakes, wheels with tyres, steering system and suspension.
- 3. Testing and servicing of electrical components like battery, starting system, ignition system, central locking system, lighting system, and alternator. Experiments on microprocessors related to automobiles
- 4. Dismantle and assemble of major systems (clutch system, Gear boxes, Propeller shaft, Differential, Front and Rear axles, brake system, steering system and suspension system) and identifying remedies (like backlash adjustment, brakes adjustment, bleeding of brakes) for the possible problems based on trouble shooting charts.
- 5. Draw sketch of seating arrangements, seats for commercial vehicle and study the comfort levels provided for driver and passengers.
- 6. Draw sketches of different mechanisms of door, seat adjustments mechanisms.

Laboratory Assessment:

- 1. Each Laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE)
- 2. Allocation of 50 marks for CIE
 - c. Performance and journal write-up : Marks for each experiment = 30 marks/No. of proposed experiments.
 - d. One practical test for 20 marks. (5 write-up, 10 conduction, calculation, results etc., 5 viva-voce).

Allocation of 50 marks for SEE

- 1. To know the electrical and power train trouble shooting aspects and specifications of various vehicles
- 2. Able to demonstrate the dismantling of various transmission elements like clutch, gear box etc. and study its details
- 3. Able to demonstrate the dismantling of electrical elements and study its details
- 4. To be able to know the seat adjustments and door mechanisms

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	1	2	3									
C01	2	1	1			1			2	1	1	1	1	2	1	
CO2	2	1	1			1			2	1	1	1	1	2	1	
CO3	2	1	1			1			2	1	1	1	1	2	1	
CO4	2	1	1			1			2	1	1	1	2	2	1	

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

Jung

Basveshwar Engineering College, Bagalkote

Department of Automobile Engineering

Scheme of Teaching and Evaluation (Academic Year 2021 - 2022)

VII Semester BE

Sl.	Subject Code	Subject Title	Credits	Но	urs/ W	eek	Exam	ination I	Marks
No	Subject Code	Subject The	Creuits	L	Т	Р	CIE	SEE	Total
1.	UAU721C	Vehicle Body Engineering	3	3	0	0	50	50	100
2.	UAU712C	Vehicle Dynamics	3	3	0	0	50	50	100
3.	UAU723C	Autotronics	3	3	0	0	50	50	100
4.	UAU XXXE	Dept. Elective - III	3	3	0	0	50	50	100
5.	UAUXXXN	Open Elective - II	3	3	0	0	50	50	100
6.	UAU716L	Automotive Reconditioning Laboratory	1	0	0	3	50	50	100
7.	UAU717P	Project Phase - I	5	0	0	8*	50	50	100
8.	UAU718I	Internship	2	0	0	0	0	0	0
		Total	23	15	0	11	400	400	800

Department Electives - III

Sl. No	Code	Subjects
1	UAU761E	Modern Machining Processes
2	UAU762E	Rocket and Jet Propulsive Systems
3	UAU763E	On and Off Board Vehicle Diagnostics
4	UAU764E	Electrical Vehicles

Basveshwar Engineering College, Bagalkote

Department of Automobile Engineering

Scheme of Teaching and Evaluation (Academic Year 2021 - 2022)

VIII Semester BE

Sl.	Subject	Subject Title	Credit	Но	urs/ W	eek	Examination Marks			
No	Code	Subject The	s	L	Т	Р	CIE	SEE	Total	
1.	UAUXXXE	Dept. Elective - IV	3	3	0	0	50	50	100	
2.	UAUXXXE	Dept. Elective - V	3	3	0	0	50	50	100	
3.	UAUXXXE	Dept. Elective - VI	3	3	0	0	50	50	100	
4.	UAU804P	Project Phase - II	12	0	0	24	50	50	100	
5.	UAU805S	Technical Seminar	1	0	0	0	50	50	100	
		Total	22	9	0	24	250	250	500	

Department Electives - IV

Sl. No	Code	Subjects
1	UAU821E	Alternative Energy Sources
2	UAU822E	Computational Fluid Dynamics
3	UAU823E	Intelligent Transport Systems and Future trends
4	UAU824E	Robotics and Automation

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

UAU712C	
L:T:P - N _L :3 N _T :0 N _P 0	VEHICLE DYNAMICS
Total Hours/Week: 03	

Credits: 03 CIE Marks: 50 SEE Marks: 50

10 Hrs.

UNIT-I

UNDAMPED FREE VIBRATION: Introduction, sinusoidal motion, single degree of freedom system, Newton's method, energy method and De'Alembert's principle, undamped free vibration - natural frequency of free vibration, problems.

DAMPED FREE VIBRATION: Single degree of freedom systems, different types of damping, concept of critical damping and its importance, response study of viscous damped systems for cases of under damping and over damping, logarithmic decrement, problems.

UNIT-II

10 Hrs.

FORCED VIBRATION: Single degree of freedom systems, steady state solution with viscous damping due to harmonic force solution by complex algebra, vibration isolation - transmissibility ratio, energy dissipated by damping equivalent viscous damping, structural damping, sharpness of resonance, base excitation, problems.

SYSTEMS WITH TWO DEGREE OF FREEDOM: Introduction, principle modes and normal modes, coordinate coupling, generalised and principle co-ordinate, free vibrations in terms of initial conditions, Lagrange's equation, semi-definite systems, applications: Vehicle suspension, dynamic vibration absorber, dynamics of reciprocating engines, problems.

UNIT-III

NUMERICAL METHODS FOR MULTI DEGREE OF FREEDOM SYSTEMS: Introduction, influence coefficients, Maxwell's reciprocal theorem, Dunkerley's method, orthogonality principle, method of matrix iteration- method of determination of all the natural frequencies using sweeping matrix and orthogonality principle, Holzer's method for systems with free, fixed free and fixed ends, Stodola method, Rayleigh Ritz method for beam vibration.

UNIT-IV

10 Hrs.

10 Hrs.

VEHICULAR VIBRATION: Vibration due to road roughness, vibration due to engine unbalance, reciprocating and rotating unbalance, transmissibility of engine mounting vibration with two degree of freedom, compensated suspension systems forced vibration.

TYRE MECHANICS: Vehicle control - low speed cornering and static steering, steady-state cornering - steering factors, vehicle control parameters (under steer, neutral steer and over steer), roll steer, compliance steer, ride steer, slip angle steer, steady state handling - lateral acceleration gain, characteristic speed, yaw velocity gain, critical speeds.

Reference Books *

TEXT BOOKS:

- 1. Mechanical Vibration G.K.Grover, Nemchand & Brothers, 1989
- 2. Mechanical Vibration V.P.Singh, Dhanpat Rai & Company Pvt. Ltd., 3rd Edition, 2006.
- 3. Fundamentals of vehicle dynamics Thomas D. Gillespie, SAE USA 1992

REFERENCE BOOKS:

- 1. Vibration Theory Mechanical Vibrations- S.S.Rao, Pearson Edu.Inc., 4th Edition, 2003
- 2. Theory & Problems of Mechanical Vibration William W. Seto, McGrawHill (schaum's

outline series)

- 3. Problems in Automobile Mechanics N.K.Giri, Khanna Pub.2004
- 4. Mechanics of Pneumatic Tyre S.K.Clark, Prentice Hall
- 5. Mechanical Vibration Analysis- P.Srinivasan, TMH

Course Outcomes**

- 1. Classify and determine first and second order vibratory systems and formulate using basic approach.
- 2. Analyze the response of damped systems for varying degree of damping and compute the natural frequency of damped free vibration of mechanical systems.
- 3. Evaluate on numerical methods and their significance in multi degree freedom systems.

4. Illustrate the natural frequencies and mode shapes for multi-degree of freedom vibrating systems.

- 5. Investigate the response of vibrating systems due to engine unbalance
- 6. Asses the tire mechanics and analyze the vehicle control parameters

Course Outcomes		Programme Outcomes (POs)												Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
C01	3	3	1	2							1	2	3	3	2		
CO2	3	3	2	2							1	2	3	3	2		
CO3	3	3	1	2							1	2	3	3	3		
CO4	3	3	1	2							1	2	3	3	2		
CO5	3	3	3	2							1	2	3	3	2		
CO6	3	3	2	2							1	2	3	3	2		

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

UAU 721C
$L:T:P - N_L :4 N_T:0 N_P ($
Total Hours/Week: 04

0

VEHICLE BODY ENGINEERING

Credits: 03

CIE Marks: 50

SEE Marks: 50

UNIT-I

10 Hrs.

INTRODUCTION: Classification of coachwork type: styling forms, coach and bus body style, layout of cars, buses and coach with different seating and loading capacity, commercial vehicle types, vans and pick-ups. Terms used in body building construction, angle of approach, angle of departure, ground clearance, cross bearers, floor longitudes, posts, seat rail, waist rail, cant rail, roof stick, roof longitude, rub rail, skirt rail, truss panel, wheel arch structure, wheel arch, post diagonals, gussets.

VEHICLE BODY MATERIALS: Properties, manufacturing methods and suitability for vehicle body construction Aluminum alloys, steel, alloy steels, plastics and composite materials, semi rigid PUR foams and sandwich panel construction. Paints and adhesives.

AERODYNAMICS: Basics, various types of forces and moments, effects of forces and moments, various body optimization techniques for minimum drag, study of wind tunnels, flow visualization techniques, tests with scale models, aerodynamic study for heavy vehicles.

LOAD DISTRIBUTION: Type of body structures, vehicle body stress analysis, vehicle weight distribution, calculation of loading for static loading, symmetrical, longitudinal loads, side loads, stress analysis of bus body structure under bending and torsion.

UNIT-III

UNIT-II

10 Hrs.

10 Hrs.

INTERIOR ERGONOMICS: Introduction, seating dimensions, interior ergonomics, seat comfort, driver seat design, dash board instruments, electronic displays, commercial vehicle cabin ergonomics, mechanical package layout, goods vehicle layout. Visibility, regulations, driver's visibility, methods of improving visibility, window winding mechanisms.

VEHICLE STABILITY: Introduction, longitudinal, lateral stability, vehicle on a curvilinear path, critical speed for toppling and skidding. Effect of operating factors on lateral stability, steering geometry and stabilization of steerable wheels, mass distribution and engine location on stability.

UNIT-IV 10 Hrs. NOISE AND VIBRATION: Noise characteristics, sources of noise, noise level measurement techniques, body structural vibrations, chassis bearing vibration, designing against fatigue, methods of noise suppression. **SAFETY:** Impact protection basics, physics of impact between deformable bodies, design for crash worthiness, occupant and cargo restraint, passive restraint systems, side impact analysis, bumper system, energy absorbent foams, laws of mechanisms applied to safety.

Reference Books *

TEXT BOOKS:

- 1. Sydney F page, "Body Engineering" Chapman & Hall Ltd, London, 1956
- 2. "Giles J Pawlowski", Vehicle body engineering Business books limited, 1989
- 3. John Fenton, "Vehicle body layout and analysis", Mechanical Engg. Publication ltd, London.

REFERENCE BOOKS:

- 1. Hand book on vehicle body design SAE publication
- 2. Automotive chassis by P.M. Heldt, Chilton & Co, 1970
- 3. Vehicle Safety 2002, Cornwell press, Townbridge, UK, ISBN 1356-1448.
- 4. Redesign of bus bodies part I & part II CIRT pune (Report), 1983
- Ed W.H. Hucho, Aerodynamics of Road Vehicles, 4th Edition, Butter worth's 1987

Course	e Outcomes**
1.	To know and analyze classification, vehicle body construction, design and development of various types of vehicles and their layouts body design nomenclatures.
2.	To know and analyze fixed and free control systems, aerodynamic styling, trimming, materials and paintings used in vehicle body design and development of various vehicles.
3.	Analyze the forces and couples acting on vehicle during various running conditions.
4.	Develop templates / prototypes and analyze the various aerodynamic forces and couples acting on the vehicle, pressure distribution analysis and flow visualization techniques while testing in wind tunnel.
5.	To analyze and develop SFD and BMD for load distribution and stress analysis in vehicle body design.
6.	To analyze space optimization techniques, visibility, body development skills, luxury, ergonomics for both driver and passengers. NVH analysis and safety.

Course Outcomes				Pro		Prog Outo	Program Specific Outcomes (PSOs)								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	3	3	1							3	2	2	2
CO2	3	2	3	3	2							3	2	2	2
CO3	3	2	3	3	2							3	2	2	2
CO4	3	2	3	3	2							3	1	2	2
CO5	3	2	3	3	2							3	1	2	2
CO6	3	2	3	3	2							3	2	2	2

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

June

UAU723C		Credits: 03
L:T:P - N _L :3 N _T :0 N _P 0	AUTOTRONICS	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	10 Hrs.
INTRODUCTION: Need for electronics in automotive control systems, structure of vehic systems, common features of vehicle systems, measurement system, sensors and actuators.	le electronics
INTRODUCTION TO ELECTRONICS: Electronic components, diodes, transistors, electro	onic circuits,
analog circuits, digital circuits, integrated circuits, microprocessor systems, systems approach to	o control and
instrumentation.	
UNIT–II	10 Hrs.
ELECTRONIC IGNITION SYSTEMS: Types of ignition systems, conventional ignition s programmed ignition system, distributor-less ignition system, direct ignition. ELECTRONIC FUEL CONTROL: Electronic control of carburetion, petrol injection system, multi point injection system, components, flow diagram, diesel fuel injection.	-
UNIT-III	10 Hrs.
control, digital control techniques, complete vehicle control systems, artificial intelligence management. CHASSIS ELECTRICAL SYSTEMS: Anti-lock brakes, active suspension, traction control control of automatic transmission.	C
UNIT-IV	10 Hrs.
ELECTRONICS FOR COMFORT, SAFETY AND SECURITY: Electric seats, mirrors a	and sun-roof
operation, central looking and electric windows, cruise control, In Car Entertainment	(ICE) and
communications, adaptive noise control, airbags and seatbelt tensioners, obstacle avoidance ra systems - engine immobilizer, ICAT.	dar, security
Reference Books *	
TEXT BOOK: 1. Automotive electrical and electronic systems: Tom Denton, 3 rd edition, SAE International.	
REFERENCE BOOKS: 1. Automotive electronics: Eric Chowanietz, Newnes, 1995.	

2. Understanding automotive electronics, William B Ribbens, Butterworth-Heinemann.

3. Automotive Electrics Automotive Electronics, Robert Bosch.

- 1. To justify the need of Autotronic systems and explain the construction of various electronically controlled chassis and vehicle safety systems.
- The student will be able to analyze the working of electronic control systems used in modern 2. automobiles
- To apply the knowledge of working of various sensors in the control of vehicular systems 3.
- 4. To compare the working of programmed control systems with conventional vehicular control systems

5. To evaluate the performance of vehicle embedded with engine management systems

6. To justify the need of Autotronic systems and explain the construction of various electronically controlled chassis and vehicle safety systems.

Course Outcomes				Pro			Program Specific Outcomes (PSOs)								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	3	1	1			1	1	1		1	
CO2	3	2	2	2	2	1	1			1	1	1	1	3	2
CO3	3	2	2	2	2	1	1			1	1	1	1	3	3
CO4	3	2	2	2	3	1	1			1	1	1	1	2	2
CO5	3	2	2	2	3	1	1			1	1	1	1	2	2
CO6	3	2	2	2	3	1	1			1	1	1	1	2	1

UAU761E

L:T:P - N_L :3 N_T:0 N_P 0 Total Hours/Week: 03

MODERN MACHINING PROCESSES

Credits: 03

CIE Marks: 50

SEE Marks: 50

UNIT-I	10 Hrs.
INTRODUCTION: History, classification, comparison between conventional and non-convention	nal machining
process selection.	
ULTRA SONIC MACHINE(USM): Introduction, equipment, tool materials and tool size, abi	-
cutting tool system design: effect of parameter: effect of amplitude and frequency and vibration	on, effect of
abrasive grain diameter, effect of applied static load, effect of slurry, tool and work material.	
UNIT–II	10 Hrs.
ABRASIVE JET MACHINING(AJM): Introduction, equipment, variables in AJM: carrier	
abrasive, size of abrasive grain, velocity of the abrasive jet, mean number. abrasive particles per u	
the carrier gas, work material, Stand Off Distance(SOD), nozzle design, shape of cut. Ad	U U
disadvantages of AJM. Water Jet Machining: principle, operation, application, advantages and	limitations of
water jet machinery. ELECTROCHEMICAL MACHINING(ECM): Introduction, study of ECM machine, eleme	opto of ECM
process: Cathode tool, anode work piece, source of DC power, electrolyte, chemistry of the pi	
process characteristics - material removal rate, accuracy, surface finish, ECM tooling: E	-
technique and example, tool and insulation materials, tool size electrolyte flow arrangement, hand	ining of stug,
economics of ECM, advantages, limitations.	10.11
UNIT-III	10 Hrs.
CHEMICAL MACHINING(CHM): Introduction, elements of process, chemical blank	01
Preparation of work piece, preparation of masters, masking with photo resists, etching for blanking chemical blanking, applications of chemical blanking, chemical milling (contour machining): page 1.	<u> </u>
masking, etching, process characteristics of CHM: material removal rate accuracy, surface finish.	rocess steps -
ELECTRICAL DISCHARGE MACHINING(EDM): Introduction, machine, mechanism of me	etal removal.
dielectric fluid, spark generator, EDM tools (electrodes) electrode feed control, electrode	
electrode wear, EDM tool design choice of machining operation electrode material selection, und	
length of electrode, machining time. Flushing; pressure flushing, suction flushing, side flush	•
flushing synchronized with electrode movement.	<i>8</i> , 1
UNIT-IV	10 Hrs.
PLASMA ARC MACHINING(PAM): Introduction, equipment, non-thermal generation of plas	
of gas, mechanism of metal removal, PAM parameters, process characteristics. Safety precautions	
advantages and limitations.	
LASER BEAM MACHINING(LBM): Introduction, equipment of LBM mechanism of metal re-	emoval, LBM
parameters, process characteristics, applications, advantages and limitations.	
ELECTRON BEAM MACHINING(EBM): Principle, equipment, operations, applications, adv	vantages and
limitation of EBM.	

Reference Books *

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

TEXT BOOKS:

- 1. Modern Machining Process by Pandey and Shah, TATA McGraw Hill 2000
- 2. New Technology by Bhattacharya, 2000

REFERENCE BOOKS:

- 1. Production Technology -HMT, TATA McGraw Hill. 2001
- 2. Modern Machining Process Aditya, 2002
- 3. Non-Conventional Machining P.K.Mishra, The Institution of Engineers (India) Test book series,

- Narosa Publishing House 2005.
- 4. Metals Handbook Machining volume 16 Joseph R. Davis (Editor), American Society of Metals (ASM)

- 1. Define and Classify different non traditional machining techniques and their working principle.
- 2. Classify the NTM systems based on applications and limitation.
- 3. Ability to analyze the working parameters for optimize productivity.
- 4. Compare two or more NTM methods on the basis of merits and demerits.

Course Outcomes		Programme Outcomes (POs)											Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
C01	3	1	1	1								2	2	2	1		
CO2	3	2	1	1								2	2	2	1		
CO3	3	2	1	1								2	2	2	1		
CO4	3	3	1	1								2	2	2	1		

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

UAU762E
L:T:P - N _L :3 N _T :0 N _P 0

Total Hours/Week: 03

ROCKET AND JET PROPULSION SYSTEM

Credits: 03

CIE Marks: 50

SEE Marks: 50

UNIT-I

INTRODUCTION: Review of thermodynamic principles, principles of aircraft propulsion, types of power plants, basics of heat transfer; conduction, convection, radiation, diffusion mass transfer basic concepts and governing equations.

FUNDAMENTALS OF GAS TURBINE ENGINES ILLUSTRATION OF WORKING OF GAS TURBINE ENGINE: Thrust equation - factors affecting thrust - effect of pressure, velocity and temperature changes of air entering compressor - methods of thrust augmentation - characteristics of turboprop, turbofan and turbojet - performance characteristics.

UNIT-II

10 Hrs.

SUBSONIC AND SUPERSONIC INLETS FOR JET: Engines internal flow and stall in subsonic inlets boundary layer separation - major features of external flow near a subsonic inlet - relation between minimum area ratio and eternal deceleration ratio - diffuser performance - supersonic inlets - starting problem on supersonic inlets - shock swallowing by area variation - external declaration - models of inlet operation.

COMBUSTION CHAMBERS AND NOZZLES: Classification of combustion chambers - important factors affecting combustion chamber design - combustion process - combustion chamber performance - effect of operating variables on performance - flame tube cooling - flame stabilization - use of flame holders - theory of flow in isentropic nozzles - convergent nozzles and nozzle choking - nozzle throat conditions - nozzle efficiency - losses in nozzles - over expanded and under - expanded nozzles - ejector and variable area nozzles - interaction of nozzle flow with adjacent surfaces - thrust reversal.

UNIT-III

COMPRESSORS PRINCIPLE OF OPERATION OF CENTRIFUGAL COMPRESSOR: Work done and pressure rise - velocity diagrams - diffuser vane design considerations – Concept of pre whirl - rotation stall - elementary theory of axial flow compressor - velocity triangles - degree of reaction - three dimensional - air angle distributions for free vortex and constant reaction designs - compressor blade design - centrifugal and axial compressor performance characteristics.

INTODUCTION TO TURBINES: Types of turbines - operating principle - design consideration - velocity triangles - degree of reaction - performance parameters - basics of blade design principle.

UNIT-IV

10 Hrs.

10 Hrs.

RAMJET PROPULSION: Operating principle - sub critical, critical and supercritical operation - combustion in ramjet engine - ramjet performance - sample ramjet design calculations - introduction to scramjet - preliminary concepts in supersonic combustion - integral ram- rocket.

FUNDAMENTALS OF ROCKET PROPULSION: Types and classification of rockets operating principle - specific impulse of a rocket - rocket nozzle classification - rocket performance considerations.

Reference Books *

Text Books

- 1. V. Ganesan, "Gas Turbine", Tata McGraw Hill Pub. Co. Ltd., 1996 2. Hill, P.G. & Peterson,
- 2. C.R. "Mechanics & Thermodynamics of Propulsion" Addison Wesley Longman INC, 1999. 43

References

- 1. Cohen, H. Rogers, G.F.C. and Saravanamuttoo, H.I.H. "Gas Turbine Theory", Longman,
- 2. Oates, G.C., "Aero thermodynamics of Aircraft Engine Components", AIAA Education Series, New York 1985
- 3. "Rolls Royce Jet Engine" Third Edition 1983. 5. Mathur, M.L. and Sharma, R.P., "Gas Turbine,

10 Hrs.

Course Ou	utcomes**
1. Ab	ble to know the principles of aircraft propulsion, types of power plants
2. Ab	ble to know the fundamentals of gas turbine engines illustration
3. To	study the subsonic and supersonic inlets
4. To	study the compressors principle and types of compressor used in jets
5. Ab	ble to know the ram jet propulsion and operating principle
6. Ab	ble to know the principles of aircraft propulsion, types of power plants

Course Outcomes		Programme Outcomes (POs)										Program Specific Outcomes (PSOs)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	2	2	2	1	1	1	1		1	1	1	1	2	1	2		
CO2	2	2	2	1	1	1	1		1	1	1	1	2	2	2		
CO3	2	1	1	1	1	1	1		1	1	1	1	3	2	3		
CO4	2	1	2	1	1	1	1		1	1	1	1	2	2	3		
CO5	2	2	2	1	1	1	1		1	1	1	1	1	2	2		
CO6	2	2	2	1	1	1	1		1	1	1	1	1	2	2		

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

June

L:T:P - N_L :3 N_T:0 N_P 0

Total Hours/Week: 03

ON AND OFF BOARD DIAGNOSTICS

Credits: 03

CIE Marks: 50

SEE Marks: 50

10 Hrs.

10 Hrs.

10 Hrs.

10 Hrs.

UNIT-I **INTRODUCTION: DEFINITION OF DIAGNOSTICS:** System structure, on-board diagnostics, off-board diagnostics, model based approach to diagnosis, VMBD (vehicle model based diagnosis) project, common rail demonstrator, DTI (distributor type injection) demonstrator. Prospects for failure diagnostics of automotive electronic control system. History of diagnostics tools, present state and changes in diagnostics techniques, OBD-II diagnostic logic, future trends of diagnostics technique. Further improvement of diagnostic function. UNIT-II A new object oriented diagnostic system management for power train control units with OBD. Impact of legal regulation (OBD-II), challenges for OBD software. Description of the problem domain; basic objects and relations, integration with real time system. In-cylinder diagnosis by laser tomography; measurement methods. Portable on-board diagnostic OBD-II /CAN scan tool. An on-board diagnosis method for three way catalyst deterioration Engine knock detection. OBD-II Performance of three way catalysts. Product, tools and emerging research. UNIT-III Evolution knock detection products, stages of knock detector development and tool requirements, next generation of knock systems. Virtual sensing: A neural network based intelligent performance and emissions prediction system for on-based diagnostics and engine control. Operation of virtual sensing system, virtual sensor architecture virtual sensors prediction and training, applications to diesel and petrol engine, applications of virtual sensing, engine diagnostics, engine control and engine modeling. UNIT-IV High temperature measurements for on-board diagnostics of LEV/ULEV systems. Emissions after cold start, catalyst heating systems, temperature measurement systems. Heavy duty approach to on board diagnostics. An advanced electronic control and diagnostics systems for automatic transmission: Function, structure, software, sensors, actuators, operation, diagnosis. Fuzzy system for automotive fault diagnosis. OBD-II system in the Hyundai Accent (case study). Reference Books * **BOOKS:** Ronald Jurgen Course Outcomes** 1. To study the introduction of diagnostics; System structure, on-board diagnostics, off-board diagnostics 2. To study the risks and challenges of OBD software and description of the problem domain; basic objects and relations, integration with real time system. 3. To study and analyse the neural network based intelligent performance and emissions prediction system for on-based diagnostics 4. To study and analyse the fuzzy system for automotive fault diagnosis. Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

Course Outcomes	Program Outcomes (POs)											
	1	2	3	4	5	6	7	8	9	10	11	12
C01	2	2	1	1			1			1	1	1
CO2	2	2	1	1			1			1	1	1
CO3	2	2	1	1			1			1	1	1
CO4	2	1	1	1			1			1	1	1

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

July

UAU764E	ELECTRIC VEHICLES	Credits: 03
L:T:P - N _L :3 N _T :0 N _P 0		CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

Total Hours/Week: 03

UNIT-I

10 Hrs.

INTRODUCTION: Electric vehicles; early systems, charging techniques for lead acid batteries, charging techniques for nickel based batteries, charging techniques for non aqueous batteries, Battery state of charge measurement, battery management, connection methods, battery exchange, infrastructure implications, recharging/refueling of other power storage devices.

Economic and environmental comparison of alternative vehicle options.

Electric vehicles; configuration of EVs, performance, traction motor characteristics, tractive effort and transmission requirements.

BATTERIES: Storage batteries; advanced lead acid, metal foil lead acid, nickel - iron, nickel - zinc, nickel cadmium, sodium - sulphur, sodium - nickel chloride, lithium - iron sulphide, lithium - solid polymer, lithium ion, aluminum - air and zinc - air. Formation of GHG emissions from EV fuel cycle.

CONVERSION: Conversion overview, summary of EV conversion process. Controller; overview, solid state controller, manual switch versus solid state component.

UNIT-III

UNIT-II

10 Hrs.

10 Hrs.

PROPULSION METHODS: DC Motors; series wound motors, shunt wound motors, compound wound motors, separately excited motors. AC Motors; induction motors, synchronous motors, brushless DC motors, switched reluctance motors, motor cooling, power train options for electric vehicles.

ELECTRIC PROPULSION SYSTEMS: DC motor drives, chopper control of DC motors. Drive train configuration and design objectives, control strategies.

UNIT-IV

10 Hrs.

VEHICLE DESIGN AND SAFETY: Effect of battery weight and volume, designing for minimum weight, safety of batteries, safety of alternative energy generating and storage systems, safety of other electrical systems, general design and safety issues, heating and air conditioning, auxiliary power subsystem, braking, suspension and wheel systems, rolling resistance.

Prototype and experimental electric cars.

CONTEMPORARY VEHICLE TECHNOLOGY: GM; EV1, Zafure, Ford; Think City, Ka Litmus, Nissan Hypermini, Toyota RAV 4 EV, Honda EV.

Reference Books *

TEXT BOOKS:

- 1. Vehicular Electrical Power Systems Emadi, Ehasni, Mercel (Marcel Dekker)
- 2. Electronic Engine Controls Steve V Hatch(Cengage learning)
- 3. Electric and Hybrid vehicles Pistoia (Elsevier)
- 4. Fuel cells principles and applications B. Vishwanath, M. Aulice Scibion (University Press)
- 5. Electrical vehicle machine and drives K.T.Chau (Wiley)

- 1. Able to know the principles of aircraft propulsion, types of power plants
- 2. Able to know the fundamentals of gas turbine engines illustration
- 3. To study the subsonic and supersonic inlets

- 4. To study the compressors principle and types of compressor used in jets
- 5. Able to know the ram jet propulsion and operating principle
- 6. Able to know the principles of aircraft propulsion, types of power plants

Course Outcomes		Programme Outcomes (POs)										Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	2	1	1	1	1	1	1	1	1	1	2	1	2	
CO2	2	2	2	1	1	1	1	1	1	1	1	1	2	2	2	
CO3	2	1	1	1	1	1	1	1	1	1	1	1	3	2	3	
CO4	2	1	2	1	1	1	1	1	1	1	1	1	2	2	3	
CO5	2	2	2	1	1	1	1	1	1	1	1	1	1	2	2	
CO6	2	2	2	1	1	1	1	1	1	1	1	1	1	2	2	

UAU 716L	Automotive Reconditioning Lab	Credits: 1
L:T:P - N _L :0 N _T :0 N _P 2		CIE Marks: 50
Total Hours/Week: 02		SEE Marks: 50

1.	Study and Practice of Line reboring machine									
2.	Study and Practice of calibration FIP									
3.	3. Study and Practice of vertical cylinder reboring machine									
4.	Study and Practice of reboring small and big end of connecting rod '									
5.	Study and Practice on body repairs tinkering and painting									
6.	Study and Practice of refacing of given valve									
7.	Study and Practice of surface grinding machine									
8.	Study and Practice of crank shaft grinding machine									
Labor	ratory Assessment:									
	1. Each Laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE)									
	2. Allocation of 50 marks for CIE									
	 Performance and journal write-up : Marks for each experiment = 30 marks/No. of proposed experiments. 									
	• One practical test for 20 marks. (5 write-up, 10 conduction, calculation, results etc., 5 viva-voce).									
3.	Allocation of 50 marks for SEE									

Course Outcomes		Programme Outcomes (POs)												Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
C01	3	3	2	2	2	2	1	2	2	2	2	3	1	2	1		
CO2	3	3	2	2	2	2	1	2	2	2	2	3	1	2	1		
CO3	3	3	3	2	2	2	1	2	2	2	2	3	1	2	1		
CO4	3	3	3	2	2	2	1	2	2	2	2	3	2	2	1		

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

UAU 777P	DDO IECT DI ASE I	Credits: 05
L:T:P - N _L :0 N _T : 0 N _P 10	PROJECT PHASE – I	CIE Marks: 50
Total Hours/Week: 10		SEE Marks: 50

•

Project Batch may consist of maximum of Four Students however under exceptional conditions it may

	be extended up to 5 students.
•	Guide/s may be identified by the students or it may be allotted by the department.
•	The students along with the respective guides have to decide the project work and submit the title and
	synopsis of the project work to the Departmental committee (DC) consisting of 1) HOD or HOD
	Nominee 2) Project Coordinator and 3) Respective Project Guide/s
•	Each student in the batch is directed to maintain the project progress record book to enter the progress
	of project work during the contact hours with the respective guides.
•	The contact hour schedule may be defined by the guides in consent with their batches as per
	convenience
•	The CIE evaluation is to be conducted for 50marks by the guide by reviewing the progress of the
	project work, attendance through the record books conducting at least one demo/seminar presentation

- Students have to submit the synopsis in 2 copies containing objectives, methodology, literature review, etc as a project report-I for VII Semester SEE Examination purpose. (one report to the Guide and one report to DC)
- The SEE examinations will be conducted by DC separately for each project batch for 50marks.

for the same project work before SEE examination.

In case of the change of the title/synopsis/project work, may be done in consent with the respective guides before SEE examination and the same should be brought to the notice of DC.

	Project- I										
		Examination	CIE	SEE							
		Marks 50 50 ic science, core and elective engineering subject terature survey in the identified fields and defined	50	_							
Course	e Outcomes**										
1.	. Applying knowledge of basic science, core and elective engineering subjects to identify and execute the problems.										
2.	Conduct and analyze the literatu action plan and methodology.	re survey in the identifi	ed fields an	d define the	e objectives, proposed						
3.	Able to interact, analyze and crea	te the directions and dim	ensions for p	problem solv	ving.						
4.	Skill developments in project rep	ort preparation, presentat	tion, commu	nication and	justification.						

Course Outcomes		Programme Outcomes (POs)											Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	3	3	2	2	2	2	1	2	2	2	2	3	3	3	3	
CO2	3	3	2	2	2	2	1	2	2	2	2	3	3	3	3	
CO3	3	3	3	2	2	2	1	2	2	2	2	3	3	3	3	
CO4	3	3	3	2	2	2	1	2	2	2	2	3	3	3	3	

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

June

UAU718I	INTERNSHIP	Credits: 02
$L:T:P - N_L : N_T: N_P$	INTERNSHIP	CIE Marks: 50
Total Hours/Week: 0		SEE Marks: 50

Students have to submit a report of the training undergone. Evaluation will be done at the end of the semester by evaluation committee set by the department.

Scheme of Evaluation for Internship (Mandatory)

- Students should complete 4 weeks
- Scheme of evaluation consists of both CIE and SEE.

CIE consists of 3 phases

A report about the industry / institute and objectives after 1 weeks of internship

A report on study/ methodology of internship after 2 weeks

A presentation on internship after completion of **4** weeks

Total: 50 Marks

• SEE to be conducted along with 7th semester examination, which includes viva-voce and report submission (both internal examiners)

Viva Voce	25 marks
Report	25 marks
Total	50 marks

The report should be in the format prescribed by department.

UAU821E
L:T:P - N _L :3 N _T :0 N _P 0

Total Hours/Week: 03

ALTERNATIVE ENERGY SOURCES

Credits: 03

CIE Marks: 50

SEE Marks: 50

UNIT-I	10 Hrs.
ALTERNATIVE ENERGY RESOURCES: Types of energy sources need for energy availability, merits and demerits. Green house gases and climate change. Renewal energy definition, classification and comparison with conventional fuels. SOLAR ENERGY: Solar radiation, geometry, radiation measurement devices; pyranometer and p	
solar energy collectors and their types, performance characteristics of collectors, applications of	•
solar energy storage system, photovoltaic conversion, solar cell characteristics.	10 II
UNIT-II RIOMASS ENERCY, later duction, definition of hismage, target of hismage, his	10 Hrs.
BIOMASS ENERGY : Introduction, definition of biomass, types of biomass, biomass conversion	
bio gas, composition, bio gas generation process, factors affecting bio gas generation, selection	-
plant, types of bio gas plants, construction and their working, problems involved in pro	
transportation, application of bio gas for IC engines, dual fuel approach, modifications required. P Production through pyrolysis, composition, performance modifications needed.	roducer gas:
UNIT–III	10 Hrs.
study, performance of IC engines using pure ethanol and methanol, ethanol and methanol blen properties of alcohol - gasoline blends, alcohols as diesel fuels; performance and limitati implications; crop pattern, food shortages through grain and sugarcane based alcohols. BIODIESEL : Introduction, feed stock for biodiesel production, non edible oils, raw materials fo biodiesel. Vegetable oils, types, properties. Animal fat wastes for bio diesel production. The characteristics. Biodiesel esterification. Biodiesel emissions.	ons. Genera r sustainable
UNIT-IV	10 Hrs.
HYDROGEN ENERGY: Scope and scale of hydrogen as fuel, issues and challenges of hydrogen as fuel, issues as fuel, issue	
properties; comparison with gasoline, production methods; electrolysis, thermochemical, coal	-
solar photolysis, storage; gas, liquid and metal hydrides, transportation; pipe line, liquid combustion, utility, safety and management, emission and performance characteristics of hydro engine modifications required. Natural gas, Liquefied Petroleum Gas (LPG), composition, pro- kits, modification, natural gas engines, performance and pollution study. Fuel cell; utility and metho	and solid, ogen engine, perties, LPG
Reference Books *	
TEXT BOOKS: 1. Theory of IC engines: Mathur and Sharma 2. Non-conventional energy sources: G.D. Rai. 3. Solar energy: S.P.Sukatme	
Course Outcomes**	
1. Able to know the need, availability, classification of renewable energy sources and its energy mathematical impact	nvironmental
2. Able to know the solar energy and its applications with collectors and their types.	
3. To know and analyze of bio mass and its utility with its derived products and their appl 3 angines and subsequent modification	ication in IC
3 and subsequent modification	

July)

4. Ability to study and the use of alcohol fuels, its properties and its comparison with conventional fuels.

- 5. To study and analyze the use of biodiesel, LPG and natural gas properties and its performance
- 6. Analyze the issue and challenges associated with hydrogen as an energy carrier, properties, production, storage and transportation and utilization with modifications involved.

Course Outcomes				Pro		Program Specific Outcomes (PSOs)									
	1 2 3 4 5 6 7 8 9 10 11 12									1	2	3			
CO1	2	1	1	2		2	3	1		2		2	2	1	2
CO2	2	1		2		2	3	1		2		2	2	2	2
CO3	2	2	1	2		2	3	1		2		2	2	2	2
CO4	2	2	1	2		2	3	1		2		2	2	2	2
CO5	2	1	1	2		2	3	1		2		2	2	2	2
CO6	2	2	1	2		2	3	1		2		2	2	2	2

Total Hours/Week: 03		SEE Mark	s: 50								
	UNIT-I		10 Hrs.								
INTELLIGENT TRANSPO	ORT SYSTEM (ITS): Overview and structure,	history, app	olication an								
architecture. Emergence and	characteristics of ITS. Structure of ITS, technolo	gy and user	services. IT								
standards. Benefits and constraints of ITS deployment. Advanced driver assistance system; Overview, research.											
Infrastructure based automated driving vehicles, cyber cars. Future of driver assistances. Long -term goal-											
autonomous driving. BVS Systems: requirements, (special and general), advantages, components of bus,											
access methods, network topology.											
	UNIT–II		10 Hrs.								
	EVOLUTION AND FUTURE TRENDS; safety and energy efficiency, navigation/telematic services; comfort										
and safety benefits, traffic information services, client feed back. Traffic management. Lane assistance.											
-	DATA ACQUISITION: Introduction, data types, vehicle dynamic sensors, inertial sensors, acceleration										
sensors, rotation rate sensors, steering angle sensors. Human machine interface design in modern vehicles.											
	UNIT-III		10 Hrs.								
•	architecture, potential and challenges. Concept sketc	•									
•	n the automotive industries. Control system in aut		·								
-	back control, sequential control. Vehicle navigation		-								
•	em; application, far - infrared system (FIR), near	infrared (NIR); operatin								
principles.			_								
	Requirements, sensor technology, actuator technology	y, legal aspects	s. Sports car								
engines characteristics.											
	UNIT-IV		10 Hrs.								
	ocess, studios; working environment and structure.										
-	nufacture methods, material advances, energy co	-	-								
	bedded systems, infotainment and navigation systems,	automotive an	itennas, urba								
and extra urban vehicles, rethin	č										
ELECTRICAL AND ELEC	CTRONIC POSSIBILITIES: electronic advance	s in nower t	rain design								

INTELLIGENT TRANSPORT SYSTEM AND

FUTURE TRENDS

ELECTRICAL AND ELECTRONIC POSSIBILITIES: electronic advances in power train design, electronically controlled valve actuation, electronic transmission control, electronic developments in chassis system.

Reference Books *

BOOKS: Encyclopedia of automobile engineering (vol. 4, 5 and 6)

New trends and developments in automotive system engg – Maxcello Chiaberge (INTECH)

Course Outcomes**

- 1. Able to know the overview and structure, history, application and architecture of intelligent Transport Systems(ITS)
- 2. To study the evolution and future trends of ITS and data acquisition systems
- 3. To study the steer- by- wire system architecture, potential and challenges
- 4. Able to know the details and dynamics of automated driving
- 5. To study the body design and electrical and electronic possibilities of ITS

Credits: 03

CIE Marks: 50

SFF Marks: 50

UAU 823E

L:T:P - N_L :3 N_T:0 N_P 0

Total Hours/Week: 03

I

a s

I

а а

F

a Ι

S

S

c f

d p A

F

n goalof bus.

Course Outcomes		Programme Outcomes (POs)											Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	2	2	2	1	2	2	2	1		1	1	2					
CO2	2	1	1	1	2	2	2	1		1	1	2					
CO3	2	2	1	1	2	2	2	1		1	1	2					
CO4	2	2	2	1	2	2	2	1		1	1	2					

Jung

UAU824E
L:T:P - N _L :3 N _T :0 N _P 0

Total Hours/Week: 03

ROBOTICS AND AUTOMATION

CIE Marks: 50

SEE Marks: 50

UNIT-I

INTRODUCTION AND MATHEMATICAL REPRESENTATION OF ROBOTS:

Types of robots, notation, position and orientation of a rigid body, successive rotations, Euler angles for fixed frames X-Y-Z and moving frame ZYZ. Transformation between coordinate system, homogeneous coordinates, types of joints: rotary, prismatic joint, cylindrical joint, spherical joint, representation of links using Denvit-Hartenberg parameters: link parameters for intermediate, first and last links, link transformation matrices, transformation matrices of SCARA manipulator.

UNIT-II

UNIT-III

UNIT-IV

KINEMATICS OF SERIAL MANIPULATORS:

Direct kinematics of 2R, 3R, RRP, RPR manipulator Stanford arm, inverse kinematics of 2R, 3R manipulator. Velocity and statics of manipulators: 7 hours differential relationships, Jacobian, differential motions of a frame (translation and rotation), linear and angular velocity of a rigid body, linear and angular velocities of links in serial manipulators, 2R, 3R manipulators, Jacobian of serial manipulator, velocity ellipse of 2R manipulator, singularities of 2R manipulators, statics of serial manipulators, static force and torque analysis of 3R manipulator, singularity in force domain.

DYNAMICS OF MANIPULATORS:

Kinetic energy, potential energy, equation of motion using Lagrangian, equation of motions of one and two degree freedom spring mass damper systems using Lagrangian formulation, inertia of a link, recursive formulation of dynamics using Newton Euler equation, equation of motion of 2R manipulator using Lagrangian, Newton-Euler formulation. Trajectory planning: joint space schemes, cubic trajectory, joint space schemes with via points, cubic trajectory with a via point, third order polynomial trajectory planning, linear segments with parabolic blends, Cartesian space schemes, Cartesian straight line and circular motion planning.

CONTROL:

Feedback control of a single link manipulator - first order, second order system, PID control, PID control ofmulti link manipulator, force control of manipulator, force control of single mass, partitioning a task for force and position control lever, peg in hole hybrid force and position controller, actuators and sensors in industrial robots.

Reference Books *

TEXT BOOKS:

- 1. Fundamental Concepts and Analysis, Ghosal A., Robotics, Oxford,2006
- 2. Introduction to Robotics Analysis, Systems, Applications, Niku, S. B., Pearso Education, 2008

REFERENCE BOOKS:

Introduction to Robotics: Mechanical and Control, Craig, J. J., 2nd Edition, Addison-Welsey, 1989.
 Fundamentals of Robotics, Analysis and Control, Schilling R. J., PHI, 2006.

Course Outcomes**

1. To understand features of various robot.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

10 Hrs.

10 Hrs.

10 Hrs.

10 Hrs.

10 Hrs.

2. To understand the features robot drives and controls.

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

June

- 3. To know how the sensor technology used in robotics.
- 4. To use the programs for simple robot tasks.

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)				Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
C01	3	3	3	2	2	2	1	1	1	1	2	1	1	1	1		
CO2	3	3	3	2	2	2	1	1	1	1	2	1	2	2	2		
CO3	3	3	3	2	2	2	1	1	1	1	2	1	2	2	2		
CO4	3	3	3	2	2	2	1	1	1	1	2	1	3	2	2		

UAU832E

COMPOSITE MATERIALS

Credits: 03

CIE Marks: 50

SEE Marks: 50

 $L:T:P - N_L : 3N_T:0 N_P 0$ Total Hours/Week: 03

UNIT-I

INTRODUCTION TO COMPOSITE MATERIALS:

Definition, classification and characteristics of composite materials - fibrous composites, laminated composites, particulate composites.

FIBER REINFORCED PLASTIC PROCESSING: Lay up and curing, fabricating process, open and closed mould process, hand layup techniques; structural laminate bag molding, production procedures for bag molding; filament winding, pultrusion, pull forming, thermo-forming, injection molding, blow molding.

UNIT-II

CHARACTERISTICS OF FIBER-REINFORCED LAMINA:

Fundamentals, Elastic properties of a lamina, unidirectional, continuous fiber zero degree and angle-ply lamina. Lamina to laminate, lamination theory, lamina strains and stresses due to applied loads. Inter-laminar stresses. A, B, D matrices, simple problems.

METAL MATRIX COMPOSITES:

Reinforcement materials, types, characteristics and selection base metals selection. Need for production MMC"s and its application, mechanical properties, isostress, iso strain for fiber reinforced MMC"s applications and mechanics of fiber reinforced plastics: automobile, aircraft missiles. Space hardware, electrical and electronics, marine, recreational and sports equipment

UNIT-IV

UNIT-III

FABRICATION PROCESS FOR MMC'S:

Powder metallurgy technique, liquid metallurgy technique and secondary processing, special fabrication techniques.

STUDY PROPERTIES OF MMC'S: Physical, mechanical, wear, machinability and other properties. Effect of size, shape and distribution of particulate on properties.

Reference Books *

TEXT BOOKS:

1. Composite Science and Engineering by K. K. Chawla Springer Verlag 1998.

2. Introduction to composite materials by Hull and Clyne, Cambridge University.

REFERENCE BOOKS:

- 1. Fiber Reinforced Composites by P. K. Mallick, Marcel Dekker, Inc 2
- 2. Mechanics of Composite Materials, Robert M. Jones, McGraw Hill Kogakusha Ltd.1998

Composite materials hand book, Meing Schwaitz," McGraw Hill book company.1984

Course Outcomes**

1. To understand the concepts of composite materials and their processing

- 2. To laminates for various automotive applications
- Know of mechanical properties of metal matrix composite 3.
- 4. To approaches for fabrication of MMC and applications

10 Hrs.

10 Hrs.

10 Hrs.

10 Hrs.

Course Outcomes				Prog Outo	Program Specific Outcomes (PSOs)										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	2	2	2	1	1			1	2	1	1			
CO2	2	2	2	1	1	1			1	2	1	1			
CO3	3	2	1	2	1	1			1	2	1	1			
CO4	2	2	2	1	1	1			1	2	1	1			

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

May

 $L:T:P - N_L : 3 N_T:0 N_P 0$ Total Hours/Week: 03

ENGINE TROUBLE DIAGNOSIS AND REBUILDING

UNIT-I	10 Hrs.
DIAGNOSIS: Introduction, risk assessment and reduction, terminology. Fault code readers, system	ns, data
sources.	
TOOLS AND EQUIPMENT: Basic equipment, scanners.	
UNIT–II	10 Hrs.
DIAGNOSTIC TECHNIQUES: Introduction, diagnostic process, mechanical and electrication	al diagnostic
techniques, fault codes and systems.	
Sensors, actuators and oscilloscope diagnostics; Introduction, sensors, actuators, engine	waveforms,
communications networks.	
ON-BOARD DIAGNOSTICS : Gasoline OBD monitors, misfire detection, future developments	in diagnostic
systems. UNIT–III	10 Hrs.
ENGINE SYSTEMS DIAGNOSTICS: Engines, fuel system, ignition system, emission, fuel inject	
exhaust gas analyzer, engine analyzer, oscilloscope, chassis dynamometer. ENGINE TUNE-UP: Meaning, significance and procedure.	
UNIT–IV	10 Hrs.
PRACTICAL APPROACH AND TROUBLE DIAGNOSIS: Engine trouble diagnosis; engine	
engine runs but misses, engine lacks power, engine overheating, engine idles rough, engine bac	•
carbonizing, engine run-on or dieseling, engine stalling, engine backfires, excessive fuel,	excessive of
consumption, engine noises, low compression.	
DIESEL ENGINE TROUBLE DIAGNOSIS.	
Reference Books *	
BOOKS: Advanced automotive fault diagnosis - Tom Denton (third edition Rantledge)	
Automotive Mechanics - William Crouse	
Course Outcomes**	
1. To study the diagnosis of vehicle introduction, risk assessment and reduction, terminolog readers, systems, data sources.	gy. fault code

- To know the scope and utility of tools and equipment, basic equipment, scanners 2.
- 3. To study and analyze OBD monitors, misfire detection, future developments in diagnostic systems
- 4. To study various engine testing instruments and tune-up techniques
- 5. To study the diesel engine trouble diagnosis

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)				Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
C01	2	2	1	1	2	1				1	1	1	1	2	2		
CO2	2	2	1	1	2	1				1	1	1	1	2	2		
CO3	2	2	1	1	2	1				1	1	1	1	2	2		
CO4	2	2	1	1	2	1				1	1	1	1	2	2		
CO5	2	2	1	1		1				1	1	1	1	2	2		

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

my y

UAU834E		Credits: 03
L:T:P - N _L :3 N _T :0 N _P 0	HYBRID VEHICLES	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	10 Hrs.
HYBRID DRIVES: Introduction, features, functional classification, start/stop system, mild hybrid, plug-in-hybrid, batteries for hybrid vehicles, optimization of hybrid configurations. Change conductive charging. Super capacitor, fuels cells, solar cells, the flywheel, the hydraulic compressed air storage, thermal energy storage, non battery energy sources.	ing modes for accumulator,
UNIT-II	10 Hrs.
HYBRID ELECTRIC VEHICLES(HEVS) AND DRIVE STRUCTURES: Concept of electr architecture of hybrid electric drive train, series hybrid drive(electrical coupling), parallel hybrid e train(mechanical coupling), parallel hybrid drive train with torque coupling, power split hybrid coupling, hybrid drive train with torque and speed coupling. Control of hybrid vehicles.	electrical drive l drive, speed
UNIT-III	10 Hrs.
Road performance simulation of battery, hydrogen and hybrid cars, simulation of efficient IC Eng technologies, hybridization of energy storage, regenerative braking; braking energy versus versus versus praking power, vehicle speed, vehicle deceleration rate. Electric motor drive design. Brake system FCV. Power train options for hybrid vehicles.	ehicle speed,
UNIT-IV	10 Hrs.
economy potential of intelligent, hybrid and intelligent-hybrid passenger vehicle. Vehicle models is studies, hybrid vehicles with telematics. Hybrid system configuration of BMW, Volkswagan, Fiat, Volvo, Toyota. All-electric hybrid electromechanical hybrid vehicles, heat engine electric hybrid vehicles, production. Reference Books * BOOKS: Electric and hybrid vehicles - Gianfranco pistoia (elsevies)	
Course Outcomes**	
1. Able to classify drives in hybrid vehicles their principles and merits.	
 Able to classify and analyze different electronic control system and their application. List different batteries their merits, demerits and specification. 	
4. List different power sources used in hybrid vehicles and compare with analyze.	
 List different power sources used in hybrid vehicles and compare with analyze. To define vehicle safety system and working principles and applications. 	

hur

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	1	1				2					2	2	2	1	
CO2	3	1	1				1					2	2	2	2	
CO3	3	1	1				1					2	2	2	1	
CO4	3	1	1				3					2	2	2	2	
CO5	2	1	1				2	1				2	2	2	1	
CO6	2	1	1				1	1				2	2	2	1	

Jung

UAU852E
L:T:P - N _L :3 N _T :0 N _P 0

HYDRAULICS AND PNEUMATICS

UNIT-I

INTRODUCTION TO HYDRAULIC POWER: Pascal's law and problems on Pascal's law, continuity

10 Hrs.

Total Hours/Week: 03

s/Week: 03

equations, introduction to conversion of units. Structure of hydraulic control system. **SOURCE OF HYDRAULIC POWER**: Pumps; pumping theory, pump classification, gear pumps, vane pumps, piston pumps, pump performance, pump selection. Variable displacement pumps. HYDRAULIC ACTUATORS AND MOTORS: Linear hydraulic actuators [cylinders], mechanics of hydraulic cylinder loading, hydraulic rotary actuators, gear motors, vane motors, piston motors, hydraulic motor theoretical torque, power and flow rate, hydraulic motor performance. **UNIT-II** 10 Hrs. CONTROL COMPONENTS IN HYDRAULIC SYSTEMS: Directional control valves - symbolic representation, constructional features, pressure control valves - direct and pilot operated types, flow control valves. HYDRAULIC CIRCUIT DESIGN AND ANALYSIS: Control of single and double - acting hydraulic cylinder, regenerative circuit, pump unloading circuit, double pump hydraulic system, counter balance valve application, hydraulic cylinder sequencing circuits. Locked cylinder using pilot check valve, cylinder synchronizing circuits, speed control of hydraulic cylinder, speed control of hydraulic motors, accumulators and accumulator circuits. **UNIT-III** 10 Hrs. MAINTENANCE OF HYDRAULIC SYSTEMS: Hydraulic oils - desirable properties, general type of fluids, sealing devices, reservoir system, filters and strainers, problem caused by gases in hydraulic fluids, wear of moving parts due to solid particle contamination, temperature control, trouble shooting. **INTRODUCTION TO PNEUMATIC CONTROL**: Choice of working medium, characteristics of compressed air. Structure of pneumatic control system. **PNEUMATIC ACTUATORS**: Linear cylinders - types, conventional type of cylinder working, end position cushioning, seals, mounting arrangements applications. Rod - less cylinders - types, working advantages. Rotary cylinder types construction and application. Design parameters - selection. **UNIT-IV** 10 Hrs. **DIRECTIONAL CONTROL VALVES:** Symbolic representation as per ISO 1219 and ISO 5599. Design and constructional aspects, poppet valves, slide valves spool valve, suspended seat type slide valve. Simple Pneumatic Control: Direct and indirect actuation pneumatic cylinders, use of memory valve. Signal processing elements: Use of logic gates - OR and AND gates pneumatic applications. Practical examples involving the use of logic gates.

MULTI - CYLINDER APPLICATIONS: Coordinated and sequential motion control. Motion and control diagrams - signal elimination methods. Electro-pneumatic control: principles-signal input and output pilot assisted solenoid control of directional control valves, use of relay and contactors. Compressed air: production of compressed air compressors, preparation of compressed air driers, filters, regulators, lubricators, distribution of compressed air piping layout.

Reference Books *

TEXT BOOKS:

- 1. Fluid Power with applications: Anthony Esposito, Fifth edition pearson education, Inc. 2000.
- 2. Pneumatics and Hydraulics: Andrew Parr. Jaico Publishing Co. 2000.

REFERENCE BOOKS:

1. Oil Hydraulic Systems – Principles and Maintenance: S.R. 2002 Majumdar, Tata Mc Graw Hill publishing

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

company Ltd. 2001.

Course Outcomes**

1. To draw block diagram and explain working principles of fluid power systems

- 2. To analyze given hydraulic and pneumatic circuits
- 3. To compute dimensions of various hydraulic and pneumatic components using analytical equations
- 4. To design basic hydraulic and pneumatic circuits for a given application

5. To design electro-hydraulic and electro-pneumatic circuits for a given application

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)			Prog Outo	Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	2		1								1	2	1	1	1		
CO2	2	2	1	2							1	2	2	2	2		
CO3	3	3	2	2							1	2	2	3	2		
CO4	2	2	2	1							1	2	3	3	2		
CO5	1	2	2								1	2	3	3	2		

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

L:T:P - N_L :3 N_T:0 N_P 0

mass and structure

Total Hours/Week: xx03

AUTOMOTIVE VEHICLE SAFETY

Credits: 03	
CIE Marks: 50	
SEE Marks: 50	

UNIT-I 10 Hrs. **Introduction to vehicle safety:** Objectives, general implications. Basic concepts of vehicle safety: Underlying principles, public health analogy, prioritization of effort, triology, cause and effect, immediate objectives. Driving forces for increased vehicle safety, safety legislation, accident data. UNIT-II 10 Hrs. Accident avoidance: Human factors, comfort, ergonomics, acceleration and braking; adaptive cruise control, brake-by-wire, vehicle dynamics. Design requirement of frontal collision, rear end collision and roll over. Occupant protection: Restraint systems, seat belts, air bags for frontal impacts, side protection by air bags, additional air bag applications, sensors for systems. **UNIT-III** 10 Hrs. Risk Evaluation, human error control, risk communication, universal design, occupant injury prevent; biokinetics. Human simulation application, crash testing, accident reconstruction. Development criteria and standards for vehicle. Compatibility, accident analysis, impact analysis; frontal impact, side impact, computer simulation. UNIT-IV 10 Hrs. Body structure of small car in frontal vehicle to vehicle crash; introduction, safety improvement for small cars, new design concept, structure and crash performance. Compatibility requirement for cars in frontal and side impact: Introduction, collision type, geometry, mass and structure stiffness, car to car side impact, finite element modeling. Reference Books * **Books:** Automotive vehicle safety – George A Peters, Barbara j Peters (SAE) Automotive vehicle safety – Ulrich Seiffest, Lothar Wech Vehicle compatibility in automotive crashes – Stanley H Backaities(SAE) Course Outcomes** 1. Able to know the vehicle safety objectives, general implications. basic concepts of vehicle safety 2. To study the brake-by-wire, vehicle dynamics human factors, comfort, ergonomics. 3. To study and analyze the risk evaluation, human error control and bio-kinetics 4. To study the compatibility requirement for cars in frontal and side impact collision type; geometry,

Course Outcomes				Pro	Prog Outo	gram Spe comes (P	ecific SOs)								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	2	2	2		1		1	1	1	1	1			
CO2	2	2	1	2		1		1	1	1	1	1			
CO3	2	1	2	2		1		1	1	1	1	1			

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

CO4	2	2	2	2	1	1	1	1	1	1		

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

hur

UAU 842E	ADVANCED I.C. ENGINES	Credits: 03
L:T:P - N _L :3 N _T : 0 N _P 0		CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I

10 Hrs.

COMBUSTION IN SPARK IGNITION ENGINES: Thermodynamic analysis of SI engine combustion: burned and unburned mixture states. Analysis of cylinder pressure data, combustion process characterization, flame structure and speed; laminar burning speeds, partial burning and misfire: definitions, causes of cycle - by cycle and cylinder to cylinder variations, partial burning, misfire and engine stability. Abnormal combustion: knock and surface ignition, knock fundamentals, fuel factors. UNIT-II 10 Hrs. COMBUSTION IN COMPRESSION IGNITION ENGINES: Types of diesel combustion systems: Direct injection systems, indirect injection systems, comparison of different combustion systems, analysis cylinder pressure data; combustion efficiency, DI engines, IDI engines, ignition delay: definitions and discussion, fuel ignition quality, auto ignition fundamentals. 10 Hrs. **UNIT-III** MODERN DEVELOPMENTS IN I.C.ENGINES: Lean burn engines, ceramic and adiabatic engines, multi-valves, tuned manifolds, cam less valve gearing, variable valve timing, turbo and supercharging - waste gating, EGR, part-load charge stratification in GDI systems. Sports vehicle engines, Stirling engines, MPFI engines - operation and performance. **UNIT-IV** 10 Hrs. SPECIAL TYPES OF ENGINES: Introduction to working of stratified charged engines, Wankel engine, variable compression engine, surface ignition engines, free piston engines, current engines and future trends (e.g. convergence of SI and CI engine technology, control developments, fuel quality), effect of air cleaners and silencers on engine performance. **Reference Books * TEXT BOOKS:** 1. Internal Combustion Engines Fundamentals - John B. Heywood, McGraw Hill International Edition, 2. A course in I.C. Engines - Mathur & Sharma, Dhanpat Rai & sons, New Delhi, 1994 **REFERENCE BOOKS:** 1. I.C.Engines by Taylor, MIT Press England 1989 2. I.C.Engines By Lichty., McGraw Hill 3. Fuels & Combustion By Smith & Stinson., McGrawHill 4. Motor Vehicle Engines by M.Khovakh., Mir Publishers 5. I.C. Engines by V.Ganesan, Tata Mc Graw Hill, 1994 Course Outcomes** 1. Analyze the thermodynamic analysis and pressure variations in single and multiple cylinders of SI and

- CI engines and variation of mixture strength and emissions .2. Analyze the combustion analysis, its phases and heat release patterns and their variations, air cleaners and silencers in SI and CI engines.
- 3. Analyze cycle by cycle fluctuations in single cylinder and cylinder to cylinder and problems of power /energy imbalance, misfiring in the SI engines and types of combustion chambers in both engines.

4. To know and analyze the causes of knocking and its impacts on engine performance and their controlling methods.

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

June

- 5. Analyze the various construction, working and applications of V- type, stratified charge, multi valve, lean burn, MPFI and VCR engines.
- 6. Analyze the principle and feature of supercharging, free piston, Stirling and Wankel engine.

Course Outcomes				Pro	Program Specific Outcomes (PSOs)										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	1	1									2	2	2	1
CO2	3	1	1									2	2	2	2
CO3	3	1	1									2	2	2	1
CO4	3	1	1									2	2	2	2
CO5	3	1	1									2	2	2	1
CO6	3	1	1									2	2	2	1

UAU843E								
L:T:P - N _L : 3N _T :0 N _P 0								
Total Hours/Week: 03								

FINITE ELEMENT METHODS

Credits: 03

CIE Marks: 50

SEE Marks: 50

UNIT-I

10 Hrs.

10 Hrs.

INTRODUCTION: Equilibrium equations in elasticity subjected to body force, traction forces, stress strain relations for plane stress and plane strain, Boundary conditions, Initial conditions, Euler's Lagrange's equations of bar, beams, principle of a minimum potential energy, principle of virtual work, Rayleigh-Ritz method Galerkins method and matrix techniques. Basic procedure: General description of Finite Element Method, discretization process; types of elements 1D, 2D and 3D elements, size of the elements, location of nodes, node numbering scheme, half bandwidth, stiffness matrix of bar element by direct method, properties of stiffness matrix, preprocessing, post processing. Engineering applications of finite element method. Advantages and disadvantages of FEM.

INTERPOLATION MODELS: Polynomial form of interpolation functions - linear, quadratic and cubic, simplex, complex, multiplex elements, selection of the order of the interpolation polynomial, convergence requirements, static condensation. Penalty approach and elimination method. One dimensional bar element: Recall of 1D linear bar element. Lagrangian interpolation, higher order one dimensional elements- quadratic, cubic element and their shape functions, properties of shape functions, effect of temperature on 1D elements and stress calculation.

UNIT-III

TWO DIMENSIONAL ELEMENTS: Shape functions and stiffness matrix of 2D elements four - node quadrilateral, nine - node quadrilateral eight - node quadrilateral, serendipity and Lagrange comparison with 2D Pascals triangle. CST and LST shape functions , Jacobian matrix, stiffness matrix, force terms, stress calculation and numerical integration. Introduction to 3-D elements shape function of tetrahedron element.

UNIT-IV10 Hrs.TRUSSES AND BEAM ELEMENTS: Analysis of trusses and beam elements its shape functions, stiffness
matrix and stress calculation heat transfer problems: steady state heat transfer, 1D heat conduction governing
equation, boundary conditions, one dimensional element, functional approach for heat conduction, Galerkin
approach for heat conduction, heat flux boundary condition, 1D heat transfer in thin fins.10 Hrs.

Reference Books *

Text Books:

- 1. Finite Elements in engineering, Chandrupatla T.R., 3rd Pearson Edition.
- 2. Finite Element Analysis, C.S.Krishnamurthy,-Tata McGraw Hill Publishing Co. Ltd, New Delhi, 1995.
- 3. "Fundamental Finite Element Analysis and Application" by "Asghar Bhatti" by PageTurner 2013.

4. "Advanced Topics in Finite Element Analysis of Structures with Mathematica and MATLAB Computations" by M. Asghar Bhatti by PageTurner 2013.

Reference Books:

- 1. The FEM its basics and fundamentals: O.C.Zienkiewicz, Elsevier, 6e.
- 2. Finite Element Method, J.N.Reddy, McGraw –Hill International Edition.
- 3. Finite Element Methods, by Daryl. L. Logon, Thomson Learning 3rd edition, 2001.

Course Outcomes**

- 1. Exposure to the fundamentals of continuum mechanics
- 2. Able to analyze the various interpolation models in FEM

- 3. To apply finite element procedures for simple 2D structural elements
- 4. To be able to compute the Jacobian matrix, stiffness matrix and force terms
- 5. Apply FEA method to analyze the various heat transfer problems

Course Outcomes				Program Specific Outcomes (PSOs)											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	1	1					1	1	1			
CO2	2	2	1	2	2					1	1	1			
CO3	2	2	1	2	2					1	1	1			
CO4	2	2	1	2	1					1	1	1			
CO5	2	2	1	2	2					1	1	1			

UAU844E

 $\frac{\text{L:T:P - N_L :3 N_T:0 N_P 0}}{\text{Total Hours/Week: 03}}$

EARTHMOVING EQUIPMENTS AND HEAVY DUTY TRUCKS

SEE Marks: 50

UNIT-I

UNIT-II

EQUIPMENTS AND OPERATION: Different types of earth moving equipments and their applications. Dozers, loaders, shovels, excavators, scrapers, motor graders, rollers, compactors, tractors and attachments. Types of soil.

10 Hrs.

10 Hrs.

CARRIAGE AND SUSPENSION: Tyre and tracked vehicles, advantages and disadvantages, under carriage components like tracks, roller frames, drive sprockets, track rollers, track chains and track shoes. **SUSPENSION:** Rubber spring suspension and air spring suspension.

TRANSMISSIONS AND FINAL DRIVES: Basic types of transmissions, auxiliary transmission, compound transmission, planetary transmission, constructional and working principles, hydroshift automatic transmission and retarders. Final drives; types of reductions like, single reduction, double reduction final drives and planetary final drives, PTO shaft

UNIT-III

10 Hrs.

HYDRAULICS: Basic components of hydraulic systems like pumps (types of pumps), control valves like flow control valves, directional control valves and pressure control valves, hydraulic motors and hydraulic cylinders. Depth and draft control systems.

STEERING AND BRAKES: Power steering types like, linkage type power steering, semi integral power steering and integral power steering. Steering of tracked vehicles: articulated steering, clutch /brake steering system. Brakes: types of brakes like, disc brake, engine brakes etc.

UNIT–IV

10 Hrs.

ODS OF SELECTION OF EQUIPMENTS: Selection of machines, basic rules of equipments including the nature of operation, selection based on type of soil, selection based on haul distance, selection based on weather condition.

CALCULATION OF OPERATING CAPACITY: Methods of calculating operating capacity, calculation of productivity of EMEs.

Reference Books *

TEXT BOOKS:

- 1. Diesel equipment: volume I and II by Erich J.schulz
- 2. Construction equipment and its management By S.C. Sharma

REFERENCE BOOKS:

1.Farm machinery and mechanism by Donald R. hunt and L. W.garner

2. Theory of ground vehicles by J.Y. Wong john wiley and sons

3. Moving the earth by Herbert Nicholas

4.On and with the earth by Jagman Singh, W.Newman and Co. culkatta

Course Outcomes**

- 1. List various types of earthmovers and explain their working principles and applications
- 2. Describe and differentiate the systems used in earth movers with conventional vehicles

3. Prepare maintenance schedules for earthmovers and tractors

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

June

- 4. To identify the hydraulic components and analyze hydraulic circuits used in earthmovers
- 5. Apply analytical methods to calculate productivity of earthmovers.

Course Outcomes	Programme Outcomes (POs)													Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
C01	3											2	2	2	2			
CO2	3	2										2	2	2	2			
CO3	3	2	2	1								3	2	2	2			
CO4	3	2										3	2	2	2			
CO5	3	3	3	1								3	2	2	2			

UAU 804P	PROJECT PHASE – II	Credits: 12
L:T:P - N _L :0 N _T :0 N _P 12		CIE Marks: 50
Total Hours/Week: 12		SEE Marks: 50

- The project work defined in project -I has to be continued for the project work II.
- The guides have to review the progress of the project work continuously during the contact hours.
- The contact hour schedule may be defined by the guides in consent with their batches as per convenience
- CIE evaluation has to be done by DC based on the progress of the project work by conducting minimum of two demos/ seminar presentation for 25 marks each.
- The students of the project batches are supposed to submit the final project report earlier to SEE examination with the consent of the guide to the DC.
- The SEE examinations will be conducted by PEC consisting of 1) HOD/His Nominee, 2)Internal Examiner/Project Coordinator, 3)External Examiner separately for each project batch for 50marks

Project-II

Examination	CIE I	CIE II	SEE
Marks	25	25	50

Course Outcomes**

- Applying knowledge of basic science, core and elective engineering subjects to analyze, design, develop and solve the problems.
 Develop, fabricate and test the models, further analyze and compare performance results/ outcomes the
- 2. Develop, fabricate and test the models, further analyze and compare performance results/ outcomes the projects.
- 3. Able to articulate and analyze the results and conclude with scope for future works and cost analysis.
- 4. Skill developments in presentation, communication and project report preparation

Course Outcomes	Programme Outcomes (POs)													Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
C01	3	3	3	2	2	2	1	2	2	2	2	3	3	3	3			
CO2	3	3	3	2	2	2	1	2	2	2	2	3	3	3	3			
CO3	3	3										3	3	3	3			
CO4	3	3							3	2	3	3	2	2	2			

UAU805S		Credits: 01
$L:T:P - N_L : N_T: N_P$	TECHNICAL SEMINAR	CIE Marks: 50
Total Hours/Week: 00		SEE Marks: 50

Each student has to submit the synopsis of the seminar topic and gets approval from the department committee (DC) consisting of HoD, BoE and respective seminar guide. The department committee allots the guide for the student. Students are required to present the seminar on said topic in consultation with the guide.

Mode of Evaluation:

	Sl. No	Particulars	Marks
	1	Selection of seminar topic	4
	2	Collection of information	12
	3	Preparation of PPT	12
	4	Presentation of seminar	12
	5	Queries and discussion	10
		Total	50
cheme:			

Examination CIE SEE	Examination
Marks 50 50	Marks

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

	Title of the Subject: Auto electrical	Sot	n :5		C	'ode	: UA	A T 15	51N	J	Crec	litar	3	PSO		
	and electronic systems							105	511	• •		ms.	5	1	2	3
	Programme Outcomes Course Outcomes	Engineering knowledge	Problem analysis:	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage:	The engineer and society:	Environment and sustainability:	Ethics:	Individual and team work	Communication:	Project management and finance:	Life-long learning:	Apply engineering basic knowledge with modern computing tools in solving problems of design, production and servicing domains	Mould and develop engineers to serve in industries as professionals or entrepreneur	Prepare engineers to undertake research and higher learning
1	Elucidate the construction, working and elements of different batteries, electrical accessories and dash board instruments.	3	2	2	1	2	1				1	1	1	1	2	2
2	To comprehend and apply automotive advancements and analyze for performance	3	2	1	1	2	1				1	1	1	1	2	2
3	Able to illustrate the construction and working of different ignition system and their fault diagnosing methods and remedial techniques.	3	2	2	2	2	1				1	1	1	2	2	2
4	To realize the construction and working of starter motors and alternators	3	2	1	1	2	1				1	1	1	1	2	2
5	Analyze the working of vehicle safety systems and auxiliary systems	3	2	1	2	2	1				1	1	1	1	2	2

hur

UAU551N: AUTO ELECTRICAL AND ELECTRONIC SYSTEMS 3 Credits (L T P: 3 - 0 - 0)

UNIT - I

STORAGE BATTERY: Introduction, principle, construction and working of lead acid battery, battery tests, battery ratings, methods of charging. Alkaline, Nickel - Cadmium battery, Lithium batteries. Battery trouble shooting.

INDICATING AND WARNING DEVICES AND DASH BOARD INSTRUMENTS: Fuel

gauge, oil-pressure gauge, water temperature gauge, speedometers, horn, windscreen-wipers, signaling devices, brake warning light.

UNIT - II

AUTOELECTRONICS: Introduction to Electronic systems in Automotives - Sensors, ECU and actuators for body electronics, power train and chassis systems.

Transmission control, ABS, ESP, Traction Control, Active Suspension, passive safety, Adaptive Cruise Control. On-Board Diagnostics (OBD). Electronic suspension system.

UNIT - III

IGNITION SYSTEM: Ignition fundamentals, types of ignition systems and related components. Spark plugs; general considerations, characteristics, materials. Ignition timing; advance mechanism; centrifugal and vacuum. Ignition system trouble shooting.

ELECTRONIC IGNITION SYSTEMS: Advantages, types, distributors less ignition system, multiple coil ignitions, direct capacitor charge ignition. Electronic spark advance.

UNIT - IV **OTHER SYSTEMS:** Introduction to starter motor and drives, alternator and types, lighting systems. Electronic fuel injection systems. Types of air conditioners: manually controlled, automatically controlled. Oscilloscope. Networks and multiplexing, vehicle safety systems: seat belts, air bags. Trouble shooting diagnosis of starting motors and alternators.

TEXT BOOKS:

- 1. Automobile Engineering: Kirpal Singh
- 2. Automobile Mechanics: William H Crouse
- 3. Automotive Electrical equipments: P. L. Kohli

10 HOURS

10 HOURS

10 HOURS

10 HOURS

4	ω	2	1		
To be able to describe construction and working of different types of suspension systems and tyres	Ability to illustrate construction and working of various transmission systems	To classify brakes and steering systems, construction and operational features	To classify the different types of automotive layouts and engines and their applications	Programme Outcomes Course Outcomes	Title of the Subject: Vehicular Systems
1	2	1	1	Engineering knowledge	Sem:6
	3	2	2	Problem analysis:	1:6
З	2	-	1	Design/development of solutions	
3	1			Conduct investigations of complex problems	C
				Modern tool usage:	ode:
			1	The engineer and society:	Code: UAU641N
				Environment and sustainability:	J641
				Ethics:	Z
				Individual and team work	
				Communication:	Cre
				Project management and finance:	Credits: 3
2	2	2	2	Life-long learning:	3

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

з	3	ω		Apply engineering basic knowledge with modern computing tools in solving problems of design, production and servicing domains	1	
2	2	2		Mould and develop engineers to serve in industries as professionals or entrepreneur	2	PSO
2	2	2	2	Prepare engineers to undertake research and higher learning	3	

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

OPEN ELECTIVE UAU641N: VEHICULAR SYSTEMS 3 Credits (L-T-P: 3-0-0)

UNIT – I

10 HOURS

10 HOURS

GENERAL: Introduction, electric vehicles, hybrid vehicles, electronics in automobiles; sensors, ECU. Automotive emissions.

VEHICLE LAYOUTS: Introduction, different types of layouts, front engine front wheel drive, front engine rear wheel drive, four-wheel drive, all-wheel drive.

ENGINES: Combustion in SI Engines; ignition limits, stages of combustion, detonation, combustion chambers. **Combustion in CI Engines;** stages of combustion, delay period, diesel knock, combustion chambers. Turbo-charging and dual fuel engines.

UNIT – II

CONTROL SYSTEMS:

BRAKES: classification, hydraulic brakes, mechanical brakes, disc brakes, drum brakes, brake fluids, requirements, bleeding of brakes, air brakes, vacuum servo brakes, parking brakes, trouble shooting diagnosis. ABS and EBD.

STEERING SYSTEMS: Types of steering systems, correct steering angle, cornering force, under steer and over steer. Types of steering gear; rack and pinion, recirculating type etc. Power steering.

TRANSMISSION SYSTEMS:

CLUTCH: Purpose, requirements, materials, types of clutches; single plate, multi-plate, diaphragm, centrifugal, semi-centrifugal, vacuum, hydraulic clutch. Trouble shooting diagnosis.

GEAR BOX: Purpose, types of gear box; sliding mesh, constant mesh, synchromesh and epicyclic gear box. Gear box lubrication, gear ox troubles. Automatic transmission; significance and types.

UNIT – IV

SUSPENSION SYSTEMS:

Purpose, types of springs; coil springs, leaf springs, torsion bar, helper springs, rubber springs. Independent suspension; advantages and types. Shock absorbers. Stabilizer bars. Active suspension. Trouble shooting.

WHEELS AND TYRES: Wheels; types and materials. Tyres; Tubed and tubeless tyres; advantages. Tyre materials, desirable tyre properties, aspect ratio, nomenclature, factors affecting tyre life and tyre rotation.

TOTAL: 40 HOURS

10 HOURS

Text books:

- 1. Automobile Engineering By Kirpal singh Vol. I & II
- 2. Automobile Engineering By GBS Narang
- 3. I C Engines, M L Mathur, R P Sharma, Dhanpat Rai Publications
- 4. Automotive Mechanics, W H Crouse, Anglin, Tata Mcgraw Hil

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

10 HOURS

	Title of the Subject: Electric Vehicles	Sen	n:6		Code	: UA	U642	2N		Cre	dits:	3]	PSO 2	3
	Programme Outcomes													computing tools ing domains	as professionals	r learning
	Course Outcomes	Engineering knowledge	Problem analysis:	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage:	The engineer and society:	Environment and sustainability:	Ethics:	Individual and team work	Communication:	Project management and finance:	Life-long learning:	Apply engineering basic knowledge with modern computing tools insolving problems of design, production and servicing domains	Mould and develop engineers to serve in industries as professionals or entrepreneur	Prepare engineers to undertake research and higher learning
1	Ability to classify EVs through understanding the operational and control features.	3	2	1	1	1	1	1	-	Π	•		1	2	2	2
2	Ability to classify the automotive batteries, understand the working principles and applications.	3	2	1	1	1	1	1					1	2	2	2
3	Ability to classify the drives for EVs by realising the working and control principles, speed-torque characteristics and applications.	3	2	1	1	1	1	1					1	2	2	2
4	Ability to classify HEVs through understanding the power trains and compare the operating conditions.	3	2	1	2	2	1	1					1	2	2	2
5	Understand the force dynamics for an automobile and apply the same for selection of EV components	3	2	1	2	2	1	1					1	2	2	2

Jung

Open Elective Electric Vehicles (UAU642N) 3 Credits (L-T-P: 3-0-0)

UNIT-I

Electric Vehicles History: Basics of Electric Vehicles, components of Electric Vehicle, General Layout of EV, EV classification: Battery Electric Vehicles (BEVs), Fuel-Cell Electric Vehicles (FCEVs), Comparison with Internal Combustion Engine: Technology, Advantages & Disadvantages of EVs, National Policy for adoption of EVs, Batteries: Types, working, merits and demerits **10 Hours**

UNIT-II

Drives and controls: Drive classification: Principle and working of PMDC motor, BLDC motor and PMSM motors. Characteristics (Speed torque characteristics) and control features of PMDC motor, BLDC motor and PMSM motors. Comparison and advantages. Converters: AC-DC, DC-AC, DC-DC and AC-AC. Four quadrant operation. **10 Hours**

UNIT-III

Hybrid Powertrains: Series HEVs, Parallel HEVs, Series–Parallel HEVs, Complex HEVs, Operating Modes, Degree of Hybridization, Comparison of HEVs, Plug-in Hybrid Electric Vehicles (PHEVs). Compare and contrast the performance of ICE vehicles, HEVs and BEVs.

10 Hours

UNIT-IV

Vehicle dynamics: Vehicle resistance, Types: Rolling Resistance, Grading resistance, Aerodynamic drag, Vehicle performance, Calculating the Acceleration Force, Maximum speed, Total Tractive Effort and Torque Required On The Drive Wheel. Transmission: Differential, clutch & gear box, Braking performance and regenerative braking.

10 Hours

Text books:

- 1. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles by Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, and Ali Emadi, CRC Press 2005
- 2. Electric and Hybrid Vehicles- Design Fundamentals by Iqbal Husain, CRC Press, 2005
- 3. Electrical Vehicle Technology by Sunil R Pawar, Notion Press Publications, Second edition, 2021
- 4. Automobile Mechanics by N.K.Giri, Khanna Publishers, 2008

4	3	2	1		
Evaluate and apply vehicle safety techniques and impact	Analyze and demonstrate contemporary technology related to emission control	Ability to analyze and apply concepts of advancements in Brakes, steering and MPFI etc	Apply the basics of Automotives to emerging technology	Programme Outcomes Course Outcomes	Title of the Subject: Emerging Technology in Automobile
2	2	2	2	Engineering knowledge	Sem:7
2	2	2	2	Problem analysis:	1:7
1	1	1	1	Design/development of solutions	
1	1	1	1	Conduct investigations of complex problems	Co
				Modern tool usage:	de: U
1	1	1	1	The engineer and society:	Code: UAU731N
				Environment and sustainability:	31N
				Ethics:	
				Individual and team work	Q
				Communication:	Credits: 3
				Project management and finance:	
2	Þ	1	1	Life-long learning:	

2	2	2	2	Apply engineering basic knowledge with modern computing tools in solving problems of design, production and servicing domains	1	P
2	2	2		Mould and develop engineers to serve in industries as professionals or entrepreneur	2	SO
2	2	2	2	Prepare engineers to undertake research and higher learning	3	

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

(All branches)

10 HOURS

OPEN ELECTIVE UAU731N: Emerging Technology in Automobiles 3 Credits (L-T-P: 3-0-0)

UNIT – I

HYBRID / **ELECTRICAL VEHICLES**: Fundamentals, need for EVs, types of drives, batteries used for EVs, different electrical motors used for EVs. Charging systems, performance of EVs. Electrical vehicles in India and their specifications. Architecture of electric drive train. Comparison with respect to conventional power train.

FUEL CELLS: Operating principles, types and characteristics.

UNIT – II 10 HOURS

ENGINE MANAGEMENT SYSTEMS: Introduction, automotive fuel flow systems, electronic petrol and diesel injection systems. MPFI engines; construction, working and applications.

TURBO CHARGING SYSTEMS: Need, utility, application types of turbo charging systems merits limits Introduction alternative fuels for power plant for automobiles.

UNIT – III

10 HOURS

ADVANCEMENTS IN AUTOMOBILES: Variable compression ratio engine, multi valve engines, electronic power steering, anti-roll bars and OBD. Vehicle safety systems; air bags, ABS,EBD, TCS and ESP.

AERODYNAMICS: Necessity, significance and applications to surface, ambient and aerotransportation systems.

Introduction to guided vehicles, autonomous vehicles and computer aided vehicle navigational system.

UNIT – IV

10 HOURS

AUTOMOTIVE EMISSIONS AND CONTROL: Automotive emissions; petrol and diesel engine emissions; pollutants, reasons, effects of emissions. Emission norms.

Emission control measures: Catalytic converter; need, working and types. PCV systems, EGR systems, diesel particulate filters.

ALTERNATIVE FUELS: Need, availability, merits and demerits. Alcohol fuels, natural gas, biomass and hydrogen energy.

TOTAL: 40 HOURS

Text books:

- 1. Electric And Hybrid Vehicles, Gianfranco, Elsevier
- 2. Engine Emissions Fundamentals And Advances In Control, B P Pundir, Narosa Books
- 3. I C Engines, M L Mathur, R P Sharma, Dhanpat Rai Publications
- 4. Automotive Mechanics, W H Crouse, Anglin, Tata Mcgraw Hill

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE

DEPARTMENT OF BIOTECHNOLOGY

SCHEME OF TEACHING AND EXAMINATION

B. E. III SEMESTER

2023-24

SI. No	Category	Subject Code	Subject Title	Credits		our: Veel		Exan	ninatio	on Marks
110		Coue			L	Т	P	CIE	SEE	TOTAL
1.	BSC	22UMA301C	Partial definition equation and integral transforms	03	3	0	0	50	50	100
2.	IPCC	22UBT302C	Microbiology + Lab	04	3	0	2	50	50	100
3.	IPCC	22UBT303C	Unit Operations + Lab	04	3	0	2	50	50	100
4.	PCC	22UBT304C	Biochemistry	03	3	0	0	50	50	100
5.	PCC	22UBT305C	Bioprocess Principles and Calculations	03	2	2	0	50	50	100
6.	BSC	22UBT340C	Biology for Engineers	02	2	0	0	50	50	100
7.	PCCL	22UBT306L	Biochemistry Lab	01	0	0	2	50	50	100
8.	MC	22UHS001M 22UHS002M 22UHS003M	Yoga NSS PE	00	0	0	2	100	-	-
			Total	20	16	2	8	450	350	700

22UMA301C
Hours / Week : 03
Total Hours : 40

PARTIAL DIFFERENTIAL EQUATIONS AND INTEGRAL TRANSFORMS

UNIT – I 10 Hrs. Partial Differential Equations I : Introduction to PDE, Formation of PDE's by elimination of arbitrary constants and functions. Solution of non-homogeneous PDE by direct integration. Homogeneous PDEs involving derivatives with respect to one independent variable only. Solution of Lagrange's linear PDE. (RBT Levels: L1, L2 and L3) UNIT – II 10 Hrs. **Partial Differential Equations_II** : Solutions of PDE by the method of separation of variable. Derivation of one-dimensional heat and wave equations and their solutions by explicit method, solution of Laplace equation by using five point formulas. (RBT Levels: L1, L2 and L3) UNIT – III 10 Hrs. Fourier series : Periodic functions, Conditions for Fourier series expansions, Fourier series expansion of continuous and functions having finite number of discontinuities, even and odd functions. Half-range series, practical harmonic analysis. (RBT Levels: L1, L2 and L3) UNIT – IV 10 Hrs. Fourier transforms and z-transforms : Infinite Fourier transforms and inverse Fourier transforms- simple properties, Fourier sine and Fourier cosine transforms, Inverse Fourier sine and cosine transforms. Z-transforms-definition, standard forms, linearity property, damping rule, shifting rule-problems. Inverse Z-transforms. (RBT Levels: L1, L2 and L3) **References:** 1. Numerical Methods for Engineers by Steven C Chapra & Raymond P Canale. 2. Higher Engineering Mathematics by Dr. B.S. Grewal, Khanna Publishers, New Delhi. 3. Advanced Engineering Mathematics By H. K. Das, S. Chand & company Ltd. Ram Nagar, New Delhi 4. Advanced Engineering Mathematics by E Kreyszig, John Wiley & Sons. **Course Objectives:** 1. PDE's provides a powerful tool for quantifying rates of change optimizing functions, and modeling complex systems. 2. To provide a way, to represent periodic functions in terms of simple trigonometric functions. 3. To transform a function from the time domain to the frequency domain. 4. Provides a powerful mathematical tool for analyzing, designing, and manipulating

discrete time signals and systems.

Course Outcomes:

After completion of the course the students shall be able to,

- 1. Identify different types of PDEs including linear vs nonlinear, first order vs higher-order, and partial derivatives of different variables.
- 2. Learn various analytical techniques to solve to specific types of PDEs, such as variable separable and explicit method.
- 3. Grasp the concept of representing periodic functions as an infinite sum sinusoidal (sine and cosine) with different frequencies.
- 4. Grasp the concept of the Fourier transform as a mathematical tool that converts a function from the time domain into the frequency domain.

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	40	20
CIE-II	40	20
Assignments/ Quizzes/Case Study/ Course Project/Term Paper/Field Work	10	10
SEE	100	50
Total	190	100

Question paper pattern for CIE-I and CIE-II:

Question paper consists Part-A and Part-B. Part A is compulsory, it consists of short answer questions of 1 or 2 marks, covering Unit-I and Unit-II (no multiple choice questions and No true or false questions).

1. In Part-B, four questions are to be set as per the following table.

CIE	Number of questions / Maximum marks	Sub divisions	Covering entire unit
	Two questions of 15 marks (Solve any one)	Sub divisions shall not be mixed within the unit	Unit-I

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Ι	Two questions	of	15	marks	Sub	divisions	shall	not	be	mixed	Unit-II
	(Solve any one)				withi	in the unit					
	Two questions	of	15	marks	Sub	divisions	shall	not	be	mixed	Unit-III
	(Solve any one)					within the unit					
II	Two questions	of	15	marks	Sub	divisions	shall	not	be	mixed	Unit-IV
	(Solve any one)				withi	in the unit					

Question paper pattern for SEE:

- 1. Question paper consists Part-A and Part-B. Question number 1 is compulsory, it consists of short answer questions of 1 or 2 marks, covering entire syllabus (no multiple choice questions and No true or false questions, 50% of questions must be L3 and L4 level).
- 2. In Part-B total of eight questions with two from each unit; with internal choice to be set uniformly covering the entire syllabus.
- 3. Each question carries 20 marks and should not have more than four subdivisions.
- 4. In Part-B, any FOUR full questions are to be answered choosing at least one from each unit.
- 5. Sketches, figures and tables if any should be clearly drawn, as the same is scanned for printing.
- 6. The question paper should contain all the data / figures / marks allocated, with clarity.

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

22UBT302C		Credits: 04			
L: T: P - 3: 0: 2	MICROBIOLOGY	CIE Marks: 50			
Total Hours/Week: 5		SEE Marks: 50			
	UNIT-I	10 Hrs.			
Introduction:					
	f microbiology-Evolution of microbes. Con				
	y. Microbial diversity & taxonomy, Prokary	· ·			
.,	cations of Bright field microscopy, Dark-Fig	1.7			
contrast microscopy, Fluorescen	ce Microscopy and Electron microscopy (S	-			
	UNIT–II	10Hrs.			
Microorganisms:	Itra structure of Bacteria, Culturing				
structure and modes of re	ous and batch).Viruses, fungi, algae, production. Fastidious microorganis culture techniques- Aerobic and Anae	ms. Microbial toxins			
	UNIT–III	10 Hrs.			
Control of Microorganisms:					
	nd Phage biotics. Medical Microbiol by microbes-pathogenesis, symptom	•.			
	UNIT–IV	10 Hrs.			
Agricultural and Environmer	ntal Microbiology:				
Microbes in bioremediation a Industrial Microbiology: Mic alcohol, vinegar, cheese), N xanthin, agar agar) Microbi	and Aquatic Microbiology, Bio-fertil nd bio-control agents. crobial processes using yeasts and licrobes as source of protein (SCP), al insecticides, Enzymes from Micro organisms using recombinant DNA t	bacteria (production o gelatin agents (alginate bes (amylase, protease)			
REFERENCE BOOKS *					
 Tortora, Funke and Education, 2006. Stainer R.Y., Ingrahar 2010. 	el Kreig, "Microbiology"- 5 th Edition Tata Case, "Microbiology an Introduction m J.L., "General Microbiology"- 5 th E Parker, Brock's, "Biology of Microorg	n" -8 th Edition, Pearson			

- 7. E Alcamo I "Fundamentals of Microbiology"6th Ed, Jones &Bartlet, Pub. 2001.
- Prescott, Harley & Klein, "Microbiology" -7th Edition, WCB/McGraw Hill, Int. Edition, 2008.

COURSE OUTCOMES**

- Ability to know the basic concepts of Microbiology, scope ,organization and understand the techniques to study microorganisms through microscopy
- Ability to analyze the structure of different microbes and interpret the techniques used to grow and identify the microbes
- Ability to discuss the causative organisms of the disease and their effect on society
- Ability to analyse the applied techniques in the environment and create awareness to society

LIST OF EXPERIMENTS

- 1. Study of microscopes: Types, working principle, parts of the microscope, handling (operating) & caring.
- 2. Media preparation: NA, Peptone broth, PDA, Macconkeys agar.
- 3. Isolation of bacteria by serial dilution, pour plate ,spread plate and streak plate techniques
- 4. Isolation and identification of bacteria and fungi from different sources.
- 5. Study of colony characteristics and Morphology of bacteria, yeasts and fungi.
- 6. Study of different staining techniques. (Simple staining differential staining)
- 7. Enumeration of microorganisms using colony counter
- 8. Fermentation of Carbohydrates (gas production)
- 9. Growth curve of bacteria and yeast.
- 10. Antibiotic susceptibility testing of bacteria & Observation of motility by hanging drop technique.

COURSE OUTCOMES**

- 1. Ability to know the basic concepts of Microbiology, scope ,organization and understand the techniques to study microorganisms through microscopy
- 2. Ability to analyze the structure of different microbes and interpret the techniques used to grow and identify the microbes
- 3. Ability to discuss the causative organisms of the disease and their effect on society
- 4. Ability to analyse the applied techniques in the environment and create awareness to society

Course Outcomes		Programme Outcomes												Programme Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3	
CO 1	2	2	2			2		2					1	1	1	
CO 2	2	2	2		2	3		1					2	1	2	
CO 3	З	3	2		2	2		1				1	1	1	2	
CO 4	3	3	3		2	3		2				1	2	1	3	

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

22UBT303C		Credits: 04
L:T:P – 3:0:2	UNIT OPERATIONS	CIE Marks: 50
Total Hours/Week: 05		SEE Marks: 50

Fundamentals of Fluid Mechanics:

Units and Dimensions- Basic and Derived units, Dimensional homogeneity, Dimensional Analysis, Fluid definition and classification of fluids, Properties and Rheological behaviour of fluids, Newton's Law of viscosity, Newtonian and Non-Newtonian types of Fluids, Hydrostatic equilibrium, Barometric equation and Pressure measurement using manometers, Conceptual numericals, Types of Fluid flow- Laminar and Turbulent, Reynolds number and its Importance.

Fluid Flow and Measurement:

Basic equations of fluid flow - Continuity equation and Bernoulli theorem and equation; Derivation of Bernoulli's equation, Correction for Bernoulli's equation, Flow through circular and non-circular conduits, Flow Measurement, Different types of flow measuring devices (Orifice meter, Venturimeter, Rotameter), Pumps- Classification of Pumps (Centrifugal & Reciprocating pumps), Construction and working of Centrifugal pump, characteristics of pumps and Characteristic Curves.

Filtration and Sedimentation:

Theory of Filtration, Types of Filtration, Distribution of overall pressure drop (Resistances), Filter medium, Characteristics of filter medium, Filter aids, Factors Affecting Rate of Filtration, Filtration equipment's - Plate and Frame Filter Press, Rotary Drum Filter. Theory of Settling and Sedimentation, Types of Settling - Free and Hindered, Stoke's law, Newton's law, Terminal settling velocity, Batch sedimentation, Equipment (cyclones, thickeners), Conceptual numericals

Size Separation and Mixing:

Size Separation: Concept and Importance of screening operation, Type of Screen Analysis, Effectiveness of a Screen, Factors affecting performance of screens. Concept Of Mixing, Homogeneous and Heterogeneous Mixtures, Importance of Mixing and Agitation, Mixing liquids with liquids, Construction and Flow Patterns of Impellers, Mixing Of Gases With Liquids

List of Experiments in Unit Operations Laboratory

- 1. Verification of Bernoulli's theorem
- 2. Study of packed bed characteristics
- 3. Orifice meter

10 Hrs.

10 Hrs.

10 Hrs.

UNIT-II

UNIT-III

UNIT-IV

UNIT-I

10 Hrs.

- 4. Venturimeter
- 5. Rotameter
- 6. Batch sedimentation test
- 7. Screen effectiveness and Sieve analysis
- 8. Filtration
- 9. Settling

10. Mixing

Text Books and Reference Books *

- 1. McCabe W. L, Smith J. C and Harriott (2005) Unit operations of Chemical Engineering, 7th Edn., McGraw-Hill Publications, USA.
- 2. Gavhane K. A (2014) Unit Operations I, Fluid Flow and Mechanical operations, 24nd Edition. Nirali Prakashan, India.
- 3. Alan S Foust, Wenzel LA, Clump CW, Maus L, and Anderson LB (2008) Principles of Unit Operations. 3rd Edn. John Wiley & Sons, USA.
- 4. Coulson and Richardson's Chemical Engineering Volume 1A: Fluid Flow: Fundamentals and Applications. 7th Edition, Elsevier, USA. Edited by R. P. Chhabra V. Shankar (2017)

Coulson and Richardson's Chemical Engineering Volume 2A: Particulate Systems and Particle Technology. 6th Edition, Elsevier, USA. Edited by R. P. Chhabra and Basavaraj Gurappa (2019)

Course Outcomes**

After completion of the course student will be able to

- 1. Understand the application of dimensional analysis and can state and describe the nature and properties of the fluids.
- 2. Apply the knowledge of fluid mechanics and determine the flow rate, discharge of transportation fluids
- 3. Apply the knowledge of filtration and sedimentation in Engineering applications
- 4. Apply the knowledge of Size Separation and Agitation techniques in Engineering applications

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes		Programme Outcomes (POs)											Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	2	1	1	-	-	-	-	-	-	-	3			
CO2	3	2	3	2	1	-	-	-	-	-	-	-	3			
CO3	2	3	3	1	1	-	-	-	-	-	-	-	2			
CO4	2	3	3	1	1	-	-	-	-	-	-	-	2			

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

22UBT304C		Credits: 03
L: T: P - 3: 0: 0	BIOCHEMISTRY	CIE Marks: 50
Total Hours/Week: 3		SEE Marks: 50

UNIT – 1	12 Hrs.						
Carbohydrate Metabolism: Glycolysis, TCA cycle, Glyoxylate cycle, Gluconeogenesis and regulation of gluc pentose phosphate pathwayand Electron transport chain, oxidative pho bioenergetics, Structure and properties of ATP. Disorders of carbohydrate metabolism.	osphorylation,						
UNIT – 2	10 Hrs.						
Lipid Metabolism: Biosynthesis of fatty acids. cholesterol, phospholipids and glycolipids. Regula acid biosynthesis, biodegradation of fatty acid. Ketone bodies production de and diabetes. Disorders of lipid metabolism.	=						
UNIT – 3	10 Hrs.						
Nucleic acid Metabolism: Biosynthesis of purines - origin of ring atoms, formation of IMP, conversion of IMP to AMP and GMP. De novo synthesis of pyrimidine nucleotides - biosynthesis of UTP & CTP. Biodegradation of purines & pyrimidines. Recycling of Purine and Pyrimidine nucleotides by salvage pathways. Disorders of nucleic acid metabolism.							
UNIT – 4	10 Hrs.						
Amino Acid Metabolism: Biosynthesis of amino acids starting from acetyl CoA (with reference to oxaloace - Aspartate, Asparagine, Methionine, Lysine, Threonine. Biodegradation of a deamination, transamination and urea cycle. Disorders of amino acid metabolism.							
REFERENCES*							
 David L. Nelson and Michael Cox (2017). "Lehninger Principles of Bioch edition W.H Freeman & Co., Pub. Lubert Stryer (2010)., "Biochemistry" -5th edition Freeman & Co., Pub. Voet&Voet (2011). "Biochemistry"- 4th edition, John Wiley,New York Pub Thomas M. Davlins (2010). "Biochemistry with clinical correlations" Wiley-Liss;.).						

- 5. Mathews, Vanholde & Arhen (2010). "Biochemistry" -3rd edition, Pearson Education Pub
- 6. Elliot & William H (2011). "Biochemistry & Molecular Biology" 3rd edition, John Wiley.
- 7. U. Sathyanarayana (2022). "Biochemistry" -5th edition, Books and Allied Pub.

COURSE OUTCOMES**

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

After completion of the course student will have the ability

- 1. To understand the metabolic pathways in the carbohydrates along with its energetic and interpret the metabolic disorders.
- 2. To understand lipid metabolism and comprehend the regulation of along with the in born errors of metabolism.
- 3. To understand the origin of atoms in purine and pyrimidine & also interpret the pathways in the nucleic acid metabolism and also its disorders
- 4. To understand pathways involved in amino acid metabolism and its disorders.

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes		Programme Outcomes											-	amme Sp Jutcome:	
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	1	2	3	2			3	3				3	2	3	
CO 2	2	3	3	3		3	2	3				3	2	1	2
CO 3	2	2	3	3		3	2	2				3	3	2	
CO 4	2	2	2	2		2	2	2				2	2	2	

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

22UBT305C		03 - (Credits (2 : 2 : 0)						
Hours / Week : 04	BIOPROCESS PRINCIPLES AND	-	IE Marks : 50						
Total Hours : 40	CALCULATIONS	S	EE Marks : 50						
	UNIT – 1		7 + 3 Hrs.						
Introduction to Engineering Calculations									
Dimensions and System of Units: Introduction, Fundamental and Derived Units, Fundamental and Derived Quantities; System of Units (FPS, CGS, MKS, SI); Conversion of Units, Inter-conversion; Conceptual Numericals Basic Chemical Engineering Calculations: Atomic, Molecular and Equivalent weights, molar concept, Gram atom, Gram mole; Equivalent Weight; Concept of Normality, Molarity and Molality. Method of Expressing the Composition of Mixtures and solutions, weight fraction, mole fraction, Percentage by weight, mole percent and volume percent; Concept of PPM (Parts Per Million); Conceptual Numericals;									
Gases, Ideal Gas Law, Dalton's Law, Partial Pressure, Amagat's Law, Gaseous Mixtures, Relationship between Partial Pressure and Mole Fraction of Component Gas; Average									
Molecular Weight of Gas M	ixture; Density of Gas Mixture; Conceptu	ial Nun	nericals						
	UNIT – 2		7 + 3 Hrs.						
operations involved in biopr Material Balance without C General material balance ed Generalized Block Diagram equations for Unit Operation Extraction;	le of a bioprocess engineer in the biote ocesses	tput; Ilizatio culatio	Material balance n, Mixing, Drying, ns on Distillation,						
	UNIT – 3		7 + 3 Hrs.						
Material Balance Involving Chemical Reactions Generalized material balance equations, stoichiometry, Principles of stoichiometry, stoichiometric ratio, proportion, Definitions of limiting and excess reactants, fractions and percentage conversion, yield and percentage yield, selectivity, Material Balance and Conceptual Numericals on different Unit processes									
	UNIT – 4		7 + 3 Hrs.						
UNIT – 47 + 3 Hrs.Stoichiometry of Microbial growth and Product formationStoichiometry of cell Growth and Product Formation- elemental balances, degrees of reduction of substrate and biomass; available-electron balances; yield coefficients of biomass and product formation									

REFER	ENCES
	Chemical Process Calculations by D. C. Sikdar, PHI Learning Private Limited, Delhi,
	2013
	Introduction to Process Calculation by K A Gavane, Nirali Publications, 2016
	Stoichiometry by B. I. Bhatt and S. M. Vora, Tata McGraw Hill Publishing, 4 th
	Edition, 2004
	Basic Principles and Calculations in Chemical Engineering by David Himmelblau,
	PHI Learning Private Limited, 2005
	Bioprocess Engineering Principles by Pauline M. Doran, Academic Press, 2012
	Biochemical Engineering Fundamentals: by J. E. Bailey & D. F. Ollis, McGraw Hill,
	2005
	Bioprocess Engineering by Shule and Kargi, Prentice Hall, 2010
COUR	SE OUTCOMES
After	completion of the course student will be able to
1.	Describe and Perform Basic Biochemical Calculations involving compositions of
	Mixtures and solutions
2.	Apply the knowledge of Material Balances and Solve the Bioprocess Engineering
	Problems involving Unit Operations
3.	Apply the knowledge of Material Balances and Solve the Bioprocess Engineering
	Problems involving Unit Processes
4.	Solve the Bioprocess Engineering problems applying Stoichiometry knowledge of
	Microbial cells

Course Outcomes		Programme Outcomes									Programme Specific Outcomes						
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3		
CO 1	3	3 3 3 2 2							2	1							
CO 2	2	3	3									2	2	1			
CO 3	3	3	3									1	2	1			
CO 4	3	3	3														

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

June

		02 - Credits (2:	0 : 0)
Hours / Week : 02	BIOLOGY FOR ENGINEERS	CIE Marks : S	50
Total Hours : 26		SEE Marks :	
	UNIT-I	06 H	rs.
Science mimicking nature.	ials And Mechanisms on, Alliance between Engineering and Human Blood substitutes-hemoglobin oons (PFCs). Artificial Intelligence for c	n based oxygen car	riers
Biosensors & their applicat treatment	ions. Nanobiomolecules in medical sc		
	UNIT–II	06 H	lrs.
leaf), Respiration (MFCs) hydrophobic and self-clea	ography, sonars), Photosynthesis (), Bird flying (GPS and aircrafts), aning surfaces), Gecko Feet, Plant I ts), Kingfisher beak (Bullet train), Fire	Lotus leaf effect ourrs (Velcro), Sha	(Super
	UNIT-III	07 H	Irs.
Human Organ Systems An	d Rio Docigne		
transmission, EEG, Roboti disease). Heart as a pump system related issues, reasons fo defibrillators). Lungs as purification syste lung machine). Eye as a Camera system, Muscular and Skeletal S	(architecture, CNS and Peripheral c arms for prosthetics. Engineering (architecture, electrical signalling - I r blockages of blood vessels, design em gas exchange mechanisms, spirc bionic eye. Kidney as a filtration Systems as scaffolds, bioengineerin	solutions for Par ECG monitoring an n of stents, pace metry, Ventilators system - dialysis s	kinson's Id heart makers, , Heart- systems.
 Brain as a CPU system transmission, EEG, Roboti disease). Heart as a pump system related issues, reasons fo defibrillators). Lungs as purification systelung machine). Eye as a Camera system, 	(architecture, CNS and Peripheral c arms for prosthetics. Engineering (architecture, electrical signalling - I r blockages of blood vessels, design em gas exchange mechanisms, spirc bionic eye. Kidney as a filtration Systems as scaffolds, bioengineerin	solutions for Par ECG monitoring an n of stents, pace metry, Ventilators system - dialysis s	kinson's nd heart makers, , Heart- systems. nuscular
 Brain as a CPU system transmission, EEG, Roboti disease). Heart as a pump system related issues, reasons for defibrillators). Lungs as purification system ung machine). Eye as a Camera system, Muscular and Skeletal Statemachine 	(architecture, CNS and Peripheral c arms for prosthetics. Engineering (architecture, electrical signalling - I r blockages of blood vessels, design em gas exchange mechanisms, spirc bionic eye. Kidney as a filtration Systems as scaffolds, bioengineerin s.	solutions for Par CG monitoring an n of stents, pace metry, Ventilators system - dialysis s g solutions for n	kinson's nd heart makers, , Heart- systems. nuscular

Jung

Reference Books *

- 1. Human Physiology, Stuart Fox, Krista Rompolski, McGraw-Hill eBook. 16th Edition, 2022
- 2. Biology for Engineers, Thyagarajan S., Selvamurugan N., Rajesh M.P., Nazeer R.A., Thilagaraj W., Barathi S., and Jaganthan M.K., Tata McGraw-Hill, New Delhi, 2012
- 3. Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011
- 4. Biomedical Instrumentation, Leslie Cromwell, Prentice Hall 2011
- 5. Biology for Engineers, Sohini Singh and Tanu Allen, Vayu Education of India, New Delhi, 2020.
- 6. Biomimetics: Nature-Based Innovation, Yoseph Bar-Cohen, 1st edition, CRC Press, 2012
- 7. Bio-Inspired Artificial Intelligence: Theories, Methods and Technologies, D. Floreano and C. Mattiussi, MIT Press, 2008
- 8. Bioremediation of heavy metals: bacterial participation, by C R Sunilkumar, N GeethaA C Udayashankar Lambert Academic Publishing, 2019
- 9. 3D Bioprinting: Fundamentals, Principles and Applications by Ibrahim Ozbolat, Academic Press, 2016
- 10. Electronic Noses and Tongues in Food Science, Maria Rodriguez Mende, Academic Press, 2016

Web links and Video Lectures (e-Resources)

- VTU EDUSAT / SWAYAM / NPTEL / MOOCS / Coursera / MIT-open learning resource
- https://nptel.ac.in/courses/121106008
- https://freevideolectures.com/course/4877/nptel-biology-engineers-other-nonbiologists
- https://ocw.mit.edu/courses/20-020-introduction-to-biological-engineeringdesign-spring-2009
- https://ocw.mit.edu/courses/20-010j-introduction-to-bioengineering-be-010jspring-2006
- https://www.coursera.org/courses?query=biology
- https://onlinecourses.nptel.ac.in/noc19_ge31/preview
- https://www.classcentral.com/subject/biology
- https://www.futurelearn.com/courses/biology-basic-concepts

Course Outcomes**

After completion of the course student will be able to

- 1. Corroborate the concepts of biomimetics for specific requirements.
- 2. Elucidate the basic biological concepts via relevant industrial applications and case studies.

- 3. Evaluate the principles of design and development, for exploring novel bioengineering projects.
- 4. Think critically towards exploring innovative biobased solutions for ecofriendly and socially relevant problems.

Course		Programme Outcomes											Programme Specific Outcomes		
Outcomes													C	Jutcome	S
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3		2	1		3						1			
CO 2	3	2	1	1		3						1			
CO 3	3		3	1		3						1			
CO 4	3		1	2		3	3					1			

22UBT306L		Credits: 01
L: T: P - 0: 0:2	BIOCHEMISTRY LAB	CIE Marks: 50
Total Hours/Week: 2		SEE Marks: 50

	LIST OF EXPERIMENTS	12 Hrs.
1.	pH measurements, concentration of solutions and units, conversion	factors,
	accuracy.	
2.	Preparation of buffers of constant strength.	
3.	Qualitative tests for carbohydrate and lipids.	
4.	Qualitative tests for amino acids and proteins.	
5.	Estimation of sugar by Folin Wu and O-toluene method.	
6.	Estimation of amino acid by ninhydrin method	
7.	Estimation of protein by Lowry's method.	
8.	Estimation of nitrogen by Kjeldahl method.	
9.	Estimation of urea by diacetylmonooxime method.	
10.	Determination of Saponification value of lipids.	
11.	Determination of lodine value of lipid.	
12.	Determination of acid value of a lipid.	
REFER	ENCE BOOKS*	
1.	Plummer D. T (2017)"Practical Biochemistry" – 3 rd edition McGraw Hill E	ducation
	pub.	
2.	T N. Pattabhiraman, (2017) "Laboratory Manual & Practical Biochemistry" 4th	า
	Edition, All India Publishers & Distributors	
3.	Sadasivam, S. and Manickam (2017) A Biochemical Method. 3rd Edition, N	lew Age
	International Publishers, New Delhi.	
4.	Rodney Boyer, "Modern Experimental Biochemistry" 3rd edition, Pearson E	ducation
	Pub, (2000).	
5.	Keith Wilson(2003). "Practical Biochemistry" 3rd edition Cambridge University	' Pub.
6.	Beedu SashidharRao and Vijay Deshpande (2005) "Experimental Biochem	nistry"I.K
	International Pvt. Ltd.	
COURS	SE OUTCOMES**	
After o	ompletion of the course student will have the ability	
1.	To understand the importance of pH & learn the different strength of solution	ution &
	buffer preparations.	
2.	To identify various biomolecules by means of qualitative analysis.	
3.	To quantify the concentrations of the biomolecules in the given sample.	
4.	To apply knowledge of acid & iodine value to determine the quality of lipids.	

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes		Programme Outcomes											-	Programme Specific Outcomes			
	1	1 2 3 4 5 6 7 8 9 10 11 12									PSO1	PSO2	PSO3				

CO 1	1	2	3	2		3	3		1	2	3	
CO 2	2	З	2	2		2	З			1	3	
CO 3	2	З	3	З	3	2	2			2	1	
CO 4	2	3	3	2	2	2	2			3	1	

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

B. E. IV SEMESTER

Sl. No	Category	Subject Code	Subject Title	Credits		lour Veel		Exan	ninatio	n Marks
					L	T	P	CIE	SEE	TOTAL
1.	BSC	22UBT401C	Biostatistics & Biomodeling	03	2	2	0	50	50	100
2.	IPCC	22UBT402C	Immunotechnology + Lab	04	3	0	2	50	50	100
3.	IPCC	22UBT403C	Heat & Mass Transfer + Lab	04	3	0	2	50	50	100
4.	IPCC	22UBT404C	Molecular Biology	03	3	0	0	50	50	100
5.	PCC	22UBT405C	Cell culture techniques	02	2	0	0	50	50	100
6.	AEC		Advance programming lab / IoT/AI & ML/ Robotics/	01	0	0	2	50	50	100
7.	PCCL	22UBT406L	Cell culture & Molecular Biology Lab	01	0	0	2	50	50	100
8.	HSMC	22UHS424C	UHV-II	01	1	0	0	50	50	100
9.	PCCL	22UBT407L	Biostatistics lab	01	0	0	2	50	50	100
10.	МС	22UHS001M 22UHS002M 22UHS003M	Yoga NSS PE	00	0	0	2	100	-	-
			Total	20	14	2	12	550	450	900

May

22UBT401C
L: T: P - 2: 2: 0
Total Hours/Week

Credits: 03 CIE Marks: 50 SEE Marks: 50

Introduction and Descriptive Statistics:

Δ

Scope of biostatistics, presentation of data, Diagrammatic and graphical represent, (simple, multiple, component bar diagrams, pie chart, histogram, frequency polygon, frequency curve, ogive curve). Measure of central tendency (meaning of central tendency, arithmetic mean, median, Quartiles, mode, geometric mean, harmonic mean their merits and demerits). Measure of dispersion: meaning, range, quartile deviation, mean deviation and standard deviation, coefficient of variation, skewness and kurtosis. Correlation and linear regression analysis, curve fitting straight line).

UNIT-II

UNIT-I

10Hrs.

10 Hrs.

Probability and Probability Distributions:

Definition of probability, Event, Mutual Exclusive, Independent, Complimentary Events Addition and Multiplication theorem of probability and examples. Discrete probability distributions: Bernoulli's , Binomial and Poisson distribution. Continuous probability distribution – normal, Standard normal variate, properties of normal curve, T, F and χ^2 (Chi square -goodness of fit test) distributions and their applications in Biology.

UNIT–III

UNIT-IV

10 Hrs.

10 Hrs.

Statistical Inference , ANOVA and Design of Experiments:

Estimation theory and testing of hypothesis point estimation, interval estimation. Sample, population, sample size determination. Methods of Sampling techniques- random (simple, stratified and systematic) non random sampling - (Judgement and convenience). Definition of analysis of variance(one way and two way classifications), Basic principles of experimental design and limitations-randomization, replication, local control, Types of statistical designs of biological experiments and limitations-CRD, RCBD, LSD, Plackett-Burmann design, Response surface methodology(RSM).

Bio-modeling:

Microbial Growth in a Chemo-stat, Growth Equations of Microbial Populations, product formation models, Models of Commensalisms, Batch culture model, Mutualism, Predation and Mutation. Simple Prey predator model, Volterra's Model for n Interacting Species. Basic Models for Inheritance, Applications of probability in genetics, Hardy - Weinberg law. Selection and Mutation Models, Genetic Inbreeding Models. Dose response studies.

REFERENCE BOOKS*

1. Khan and Khanum, (2008), Fundamentals of Biostatistics (3rd edition), Ukaaz Publication

2. Kapur J.N. (2001), Mathematical Models in Biology and Medicine(1st edition), New age international Pvt. Ltd.

3. Agarwal B.L. (2009), Basic statistics(5th edition), New age international Publishers

4. Rastogi V. B. (2006), Fundamentals of Biostatistics, Ane Books

COURSE OUTCOMES**

After completion of the course student will be able to

- 1. Interpretation of the data using different statistical methods.
- 2. Investigate the probability distributions of the data.
- 3. Design and analyze the experimentation using statistical tools.
- 4. Apply the biomodelling concepts in various biological studies.

Course Outcomes	Programme Outcomes (POs)												Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2	2	-	3	2	-	-	-	-	3	-	2	3	2	-	
CO2	2	2	-	3	1	-	-	-	-	2	-	-	3	1	-	
CO3	1	3	3		3	-	-	-	-	2	-	2	3	-	-	
CO4	3	2	-	2	2	-	-	-	-	1	-	2	2	2	-	

22UBT402C		Credits: 04
L: T: P - 3 : 0: 2	IMMUNOTECHNOLOGY	CIE Marks: 50
Total Hours/Week: 5		SEE Marks: 50

UNIT-I	10Hrs.
The immune system: Introduction, Cells and Organs of the immune system: Lymphoid cells and my Primary (thymus, bone marrow and lymphatic system) and secondary Lymph (lymph nodes, spleen, MALT). Innate and adaptive immunity. Antigens: Che biological Factors affecting antigenicity/Immunogenicity and molecular nature adjuvants. Antibodies: their structure and function, Immunoglobulin classes (IgG, I and IgM) and subclasses (isotypic, allotypes, idiotypes and anti-idiotytopic a Cytokines and their role in immune response.	noid organs emical and e, Haptens, gA, IgE, IgD
UNIT–II	10 Hrs.
Humoral and cell mediated immunity: Introduction to humoral and cell mediated immunity. B-lymphocytes matu mechanism of activation. Thymus derived lymphocytes (T cells) and types, T-cell and mechanism of activation. Major Histocompatibility Complex: MHC I ar structure and functions. Antigen processing and presentation process.	maturation
UNIT–III	10 Hrs.
Immunological disorders: Complement system and its pathways (classical, alternative and lectin pathway) and biological consequences of compliment activation. Hypersensitivity reaction types. Autoimmune disorders- Organ specific, Systemic Autoimmune disorders, treatment of autoimmune disease. Primary and secondary immunodeficiency (AIDS). Transplantation Immunology: immunological basis of graft rejection,	ons and its types and disorders

Vaccines: Active and Passive immunization. Designing vaccines for active immunization: Live, attenuated vaccines. Inactive vaccines, subunit vaccines, recombinant vector vaccines and DNA vaccines.

UNIT–IV

transplantations.

10Hrs.

Immunodiagnosis:

Antigen-antibody reactions- Precipitation reactions, agglutination reactions, Blood typing A, B, ABO & Rh. Principal and applications of ELISA, Radio immuno assay (RIA), western blot analysis, Immuno-electrophoresis, Immunofluorescence, chemiluminescence assay, flow cytometry, fluorescence activated cell sorting (FACS) analysis. Production of monoclonal antibodies.

Laboratories:

- 1. Agglutination Technique: Blood group identification and Rh factor
- 2. Laboratory diagnosis of diseases-Widal test (Tube agglutination) and VDRL
- 3. Ouchterlony Double Diffusion (ODD)
- 4. Radial Immunodiffusion (RID)
- 5. Countercurrent immunoelectrophoresis (CCIEP)
- 6. Rocket immunoelectrophoresis (RIEP)
- 7. Western blot (IGg Purification)
- 8. ELISA/ DOT Blot.

REFERENCE BOOKS *

- 1. Roitts, (2017), Essential Immunology (13th edition), Wiley Blackwell
- 2. Kuby, J.(2019), Immunology(8th edition), W H Freeman publishers
- 3. Chakravarthy, A.K. (2006), Immunology & Immunotechnology, Oxford University Press
- 4. Rastogi, S. C. (2005), Immunodiagnostics (1st Edition), New Age International

COURSE OUTCOMES**

After completion of the course student will be able to

- 1. Interpret the properties and functions of immune system.
- 2. Asses the functions of humoral and cell mediated immune system.
- 3. Develop the vaccines by analyzing the immunological disorders
- 4. Identify the diseases using different immunodiagnostic tools.

Course Outcomes				Pro	grar	nme	Out	com	es (P	Os)				Programme Speci fic Outcomes (PSOs)			
	1 2 3 4 5 6 7 8 9 10 11 12									PSO1	PSO2	PSO3					
CO 1	-	3	1	2	-	-	-	-	-	-	-	1	-	2	-		
CO 2	-	2	-	3	-	-	-	-	-	1	-	1	-	3	-		
CO 3	-	-	3	-	3	2	-	-	-	-	2	2	-	3	1		
CO 4	-	2	-	2	3	-	-	-	-	2	-	2	2	3	-		

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

22UBT403C		04- C	redits (3 : 0 : 2)
Hours / Week : 05	HEAT AND MASS TRANSFER	C	E Marks : 50
Total Hours : 40		SE	E Marks : 50
	UNIT-I		10 Hrs.

Fundamentals of Heat Transfer:

Modes of heat transfer; Conduction – steady state heat conduction through uni-layer and multilayer plane wall, sphere and cylinder, Conceptual numericals on conduction; Forced and Natural convection, Conceptual Numericals on convection; Significance of Dimensionless numbers (Nu, Gr, Pr, Re, Pe numbers only); Heat transfer to fluids without phase change; heat transfer in laminar and turbulent flow inside closed conducts.

UNIT-II

10 Hrs.

Heat Transfer concept in Heat Exchangers:

Heat transfer with phase change - Condensation – film wise and drop wise; Boiling – types of boiling; Flow arrangements in Heat transfer equipment's - co current and counter current flow; LMTD, Elementary design of double pipe heat exchanger and shell and tube heat exchanger; Concepts of Heat transfer coefficients- Individual and overall; Fouling factor and Resistance for heat transfer; Conceptual numericals

UNIT-III

10 Hrs.

Mass transfer concepts

Diffusion - Fick's law of diffusion; Measurement of diffusivity, Two film theory of mass transfer, Mass transfer coefficients and their correlations. Liquid-Liquid, Solid-Liquid, Liquid-Gas, Solid-Liquid-Gas mass transfer. Principles, mass transfer considerations in unit operations like Extraction, Absorption, Adsorption, Crystallization and Evaporation

Mass transfer Operations

Methods of distillation –Simple, Flash, and Fractional distillation of binary mixtures, Continuous Distillation with reflux, relative volatility, fractionation of binary mixtures -McCabe Thiele method, Extractive and Azeotropic distillation, Drying, Principle of Drying, Drying rate, drying curve.

LIST OF EXPERIMENTS (ANY 10)

- 1. Thermal conductivity of material (solid or liquid)
- 2. Heat transfer in a composite wall by conduction
- 3. Heat transfer by Natural Convection
- 4. Heat transfer by Forced convection
- 5. LMTD and Effectiveness in Heat Exchanger Co-current
- 6. LMTD and Effectiveness in Heat Exchanger Counter-current
- 7. Distillation
- 8. Extraction

9. Drying

10. Leaching

Reference Books *

- 1. McCabe WL, Smith JC and Harriott (2005) Unit operations in Chemical Engineering, 7th Edn., McGraw-Hill Publications, USA
- 2. Treybal RE (2012) Mass Transfer Operations, 3rd Edition, McGraw-Hill Publications, USA.
- 3. R. P. Chhabra V. Shankar (2017) Coulson and Richardson's Chemical Engineering Volume 1A: Fluid Flow: Fundamentals and Applications. 7th Edition, Elsevier, USA.
- 4. Heat and Mass Transfer: Fundamentals and Applications, 7th Edition, Butterworth-Heinemann
- 5. Pauline Doran (2012) Bioprocess Engineering Principles, 2nd Edition, Academic Press
- 6. Alan S Foust, Wenzel LA, Clump CW, Maus L and Anderson LB (2008). Principles of Unit Operations, 2nd Edn. John Wiley & Sons, USA.
- 7. Kern (2001). Process Heat Transfer, 2nd Edn. McGraw-Hill Publications, USA.
- 8. Perry RH and Green DW (2008). Perry's Chemical Engineering Hand Book, 8th Edn. McGraw-Hill Publications.

Course Outcomes**

After completion of the course student will be able to

- 1. State the different modes of heat transfer and solve basic heat transfer problems
- 2. Apply the knowledge of Heat Exchangers in Biochemical Engineering applications
- **3.** Apply the knowledge of Mass Transfer in Unit Operations to solve Biochemical Engineering problems
- 4. Apply the knowledge of Distillation and Drying Unit Operations in Bioprocess Industries

Course				Pro	gran	nme	Out	com	es				-	amme Sp	
Outcomes				Ľ)utcome	S									
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	2	2	2	2	1							1	2		
CO 2	3	2	3	3	2							2	2		
CO 3	2	3	2	2	1							1	2		
CO 4	3	2	1	1	1							1	2		

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Jung

	UNIT – 1		12 Hrs
	Information flow in biological systs (signal transduction)-molecular codon and anticodon.	0	
mechanism of DNA replic	s, structure and function of DNA ation in prokaryotes and eukaryot nd its role, DNA damage & Repai pair, SOS repair).	es, End replication	problem i
	UNIT – 2		10 Hrs
transcription factors, post Translation: Protein synthesis: Initiat translation, Structure an	of RNA polymerases (prokaryc transcriptional processing, Si RNA, A tors, Elongation factors, termina d function of prokaryotic and n. Differences between prokary nslation.	Antisense RNA techr ation codons, Mec eukaryotic riboso	hanism o mes, Pos
<u>- ,</u>	UNIT – 3		10 Hrs
galactose and lactose oper positive versus negative re Gene Expression in Eukary Regulation of eukaryotic hormones, transcriptiona	ression in prokaryotes: Operon r eron, tryptophan Operon-regulatic gulation, cyclic AMP effect/cataboli	on by attenuation n ite repression. gulation- peptide a ctures-Helix turns	nechanism nd steroi Helix. Zin
	UNIT – 4		10 Hrs
elements, transposition i Oncogenes and Protoonco Genetic Recombination ar Genetic recombination i	nd non replicative mechanisms, in maize (Mc Clintock's work), (ogenes, Tumour suppressor genes, r	Cut and paste trar etroviruses and its li sduction and recon	nsposition, fe cycle. nbination,

 22UBT404C
 Credits-3

 L: T: P - 3 : 0: 0
 MOLECULAR BIOLOGY
 CIE Marks : 50

 Total Hours/week : 03
 SEE Marks : 50

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

my

REF	ERENCES*
1.	David Nelson and Michael Cox, (2017), Lehninger Principles of Biochemistry (6 th
	Edition), W.H. Freeman
2.	James Watson (2008), Molecular Biology of the Gene (5 th Edition) Pearson Education
3.	David Freifelder, (2008), Essentials of Molecular Biology (2 nd Edition), Narosa
	Publishing House
COL	JRSE OUTCOMES**
1.	Apply the knowledge of the basic aspects of molecular biology and classify the
	mechanism of DNA repair processes along with replication.
2.	Acquire working knowledge on the mechanism of transcription, translation and post
	translational processes along with their applications in research.
3.	Use research-based knowledge of gene regulation mechanism in prokaryotes and
	eukaryotes in the field of Biotechnology.
4.	Select and apply the steps of transposition, Proto-oncogenes conversion and
	molecular mechanism of genetic recombination in treating diseases.

Course Outcomes			F	Prog	gram	me	Out	com	ies (POs)			Program Specific Outcomes (PSOs)			
	1	1 2 3 4 5 6 7 8 9 10 11 12												2	3	
CO1	1	-	2	1	3	2	1	-	-	-	-	-	2	1	1	
CO2	1	-	1	3	3	2	2	-	-	-	-	-	2	2	1	
CO3	1	-	1	3	2s	1	1	-	-	-	-	-	1	1	1	
CO4	1	-	3	3	3	2	3	-	-	-	-	-	2	2	1	

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

22UBT405C		Credits: 02
L: T: P - 2: 0: 0	CELL CULTURE TECHNIQUES	CIE Marks: 50
Total Hours/Week: 2		SEE Marks: 50
	UNIT – 1	8 Hrs.
sterilization of media, expla growth hormones in ce	equirements, lab organisation, media con ant selection, sterilisation and preparat II culture.Cellular totipotency, cytoo pryogenesis. Plant growth hormones - au and product formation.	ion for inoculation, role of lifferentition, organogenic
	UNIT – 2	6 Hrs.
-	hybridization, haploid production, mic nt, hairy root culture, synthetic seeds. ning. UNIT – 3	
Animal cell culture Techniqu		01113.
Role of antibiotics in media		ent of primary culture, cell ure - passage number, split
	UNIT – 4	6 Hrs.
exclusion and inclusion test detection and control. Stem REFERENCES BOOKS*	ility and Cytotoxicity assay –MTT, LI sts, clonogenic assay. Characterization cells & their applications	. Cell line contaminations,
 Introduction to Pla Publishers, 2010 Biotech Expanding H Bruce Alberts, Alexa Walter Molecular bio 	Ils-3 rd Edition-R.IanFreshney.Wiley Less, 2 nt biotechnology by H. S. Chawla, 2 nd Iorizons-B. D. Singh, Kalyani Publishers, ander Johnson, Julian Lewis, Martin Rafi ology of The Cell, GS publishers,2002	¹ Edition, Oxford and IBH 2010.
COURSE OUTCOMES**		
 To comprehend the a To acquire working k 	to produce in vitro cultures applications of plant tissue culture techni nowledge of culture of animal cells in <i>in v</i> ify the cell culture techniques	•

Course					Programme Specific								
Outcomes						Outcomes							
	1	2	3	4	PSO1	PSO2	PSO3						
CO 1	3										1	1	1
CO 2	1				3							2	2
CO 3	1				3		1		1		3	3	
CO 4	3				3							3	

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Jung

22UHS424C		Credit: 01
L:T:P - 1 : 0: 0	UNIVERSAL HUMAN VALUES-II	CIE Marks: 50
Total Hours/Week:01		SEE Marks: 50

UNIT-I	04 Hrs.
Introduction to Value Education: Right Understanding; Relationship and Phys	ical Facility;
Understanding Value Education; Self-exploration as the Process for Value	
Continuous Happiness and Prosperity -the Basic Human Aspiration-Current S	cenario and
Method to Fulfill the Basic Human Aspirations.	
	0411
UNIT–II	04 Hrs.
Harmony in the Human Being: Understanding Human being as the Co-existe	nce of the
Self and the Body, distinguishing between the Needs of the Self and the Body, T	he Body as
an Instrument of the Self, Understanding Harmony in the Self, Harmony of th	e Self with
the Body, Programme to ensure self-regulation and Health.	
UNIT–III	04Hrs.
Harmony in the Family and Society and Nature: Harmony in the Family – the Ba	asic Unit of
Human Interaction; 'Trust' – the Foundational Value in Relationship; 'Respec	t' – as the
Right Evaluation: Other Feelings, Justice in Human-to-Human Relationship; Uno	lerstanding
Harmony in the Society; Vision for the Universal Human Order; Understanding H	larmony in
the Nature; Interconnectedness, self-regulation and Mutual Fulfilment among	g the Four
Orders of Nature.	
UNIT–IV	03 Hrs.
Implications of the Holistic Understanding – a Look at Professional Ethics	
Definitiveness of (Ethical) Human Conduct; A Basis for Humanistic Education,	Humanistic
Constitution and Universal Human Order; Competence in Professional Eth	

Definitiveness of (Ethical) Human Conduct; A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order; Competence in Professional Ethics; Holistic Technologies, Production Systems and Management Models; Strategies for Transition towards Value-based Life and Profession

Reference Books

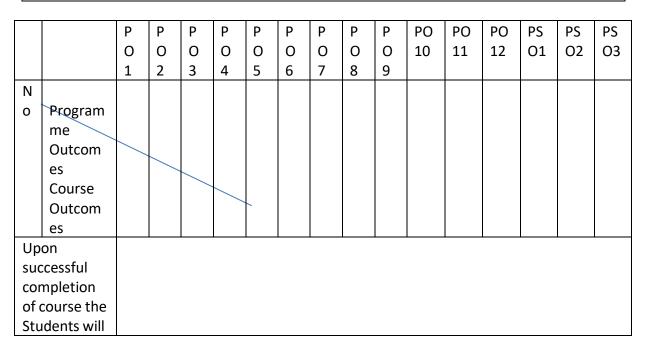
- R R Gaur, R Sangal, G P Bagaria, 'Human Values and Professional Ethics', Excel Books, New Delhi, 2010
- 2. A. Nagaraj, Jeevan VidyaEkParichaya, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 3. A.N. Tripathi, Human Values, New Age Intl. Publishers, New Delhi, 2004.
- 4. <u>Annie Leonard</u>, The Story of Stuff (Book), Simon & Schuster, 2011.
- 5. Mohandas Karamchand Gandhi, The Story of My Experiments with Truth, Public Affairs Press of Washington, DC. 1948
- 6. E. F Schumacher, Small is Beautiful,. Blond & Briggs, 1973

- 7. Cecile Andrews, Slow is Beautiful, New Society Publishers, 2006.
- 8. J C Kumarappa, Economy of Permanence, Akhil Bharat Sarva-Seva-Sangh, Rajghat, Kashi, 1958.
- 9. Pandit Sunderlal, Bharat Mein Angreji Raj, Publications Division, M/O Information & Broadcasting, Govt. of India, 2016
- Dharampal, Rediscovering India, Society for Integrated Development of Himalayas, 2003
- 11. Gandhi, Mohandas K. Hind Swaraj or Indian Home Rule Ahmedabad, Nava jivan Pub. House, 1946.

12. India Wins Freedom, Maulana Abdul Kalam Azad, Orient Black Swan, 1988.

13. Romain Rolland, Gandhi, Romain Rolland (English), Srishti, 2000.

Course Outcomes


Upon successful completion of the course, students will be able to:

CO1: Explore holistic vision of life - themselves and their surroundings.

- CO2: Develop competence and capabilities for maintaining Health and Hygiene.
- CO3: Analyse various problems in life, family, Society and in handling problems with Sustainable Solutions.
- CO4: Apply values to their own self in different day-to-day settings in

real life and in handling problems with sustainable solutions.

CO5: Adopt the value of appreciation and aspiration for excellence and gratitude for all.

be	able to:										
1	Explore										
	holistic										
	vision of										
	life -				2	2	2		4		
	themselv				3	2	3		1		
	es and										
	their										
	surround										
	ings.										
2	Develop										
	compete										
	nce and										
	capabiliti										
	es for			3	3	1	1		1		
	maintain										
	ing										
	Health										
	and										
	Hygiene.										
3	Analyse										
	various										
	problem										
	s in life,										
	family,So										
	ciety and										
	in										
				3	3	2	1		1		
	handling										
	problem										
	s with										
	Sustaina										
	ble										
	Solutions										
4	Apply										
	values to										
	their										
	own self										
	in										
	different										
				h	2	2	n		1		
	day-to-			2	2	3	2		1		
	day										
	settings										
	in real										
	life and										
	in										
	handling										
	handling										

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Jung

	problem s with sustaina ble solutions							
5	Adopt the value of apprecia tion and aspiratio n for excellen ce and gratitude for all.			3		1		

June

22UBT406L

0:0:2 - N_L : N_T: N_P

Total Hours/Week: 02

CELL CULTURE AND MOLECULAR BIOLOGY LAB

Credits: 01 CIE Marks: 50 SEE Marks: 50

1							
1.	Callus Induction Technique- Stock preparation, Media preparation.						
2.	Explants preparation and inoculation technique.						
3.	Development of suspension culture from callus						
4.	Animal cell culture techniques						
5.	Study of absorption spectra of nucleic acids.						
	UV Vis survival curve of bacteria.						
	Agarose gel electrophoresis.						
	Isolation of genomic DNA from plant sources.						
9.	Isolation of plasmid DNA from E. coli.						
	Estimation of DNA by diphenyl method.						
	Estimation of RNA by orcinol method.						
12.	Purity of nucleic acids by UV-Vis Spectrophotometer.						
13.	Standard Operating Procedure for Centrifuge and Gel Documentation Unit.						
Refere	ence Books *						
1.	Sadashiva and Manickam, (2017), Biochemical Methods, (2 nd Edition), W.H. Freeman						
2.	R.A. Dixon & Gonzales, (1995), Plant Cell Culture: A Practical Approach by IRL Press. (2nd Edition),						
3.	Sambrook& Russell, (2002), Molecular Cloning, (3 rd Edition), Cold Spring Harbor Lab.						
Course Outcomes**							
After completion of the course student will be able to							
1.	Conduct and analyze the growth of plant and animal cells by plant and animal tissue culture techniques.						

- 2. Apply absorption spectra and analyze SOP for various lab equipments.
- 3. Conduct and analyze the concentration and purity of DNA.
- 4. Conduct observations and experiments including Genomic DNA/plasmid DNA /RNA/protein.

Course Outcomes	Programme Outcomes (POs)											Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	1	3	1	-	-	-	-	-	1	1	3	1
CO2	1	2	2	1	3	2	-	1	-	-	-	1	1	3	1
CO3	1	2	2	1	3	1	-	I	-	-	-	1	1	3	1
CO4	2	2	3	2	3	2	-	I	-	I	-	1	1	3	1

22UBT407L	BIOSTATISTICS LAB	Credits: 1							
L: T: P - 0:0:2		CIEMarks:50							
Total Hours/Week: 02		SEEMarks:50							
LIST OF	LIST OF EXPERIMENTSIN BIOSTATISTICS LABORATORY								
1. Procedure for crea	ting Data file, Diagram and Graphs.								
2. Procedure and c Variance.	alculation of Mean, Median, Mode, Sta	ndard Deviation and							
3. Procedure and cal	culation of t test.								
4. Calculation of Chi-	square test.								
5. ANOVA- one-way	·								
6. ANOVA- two-way a	analysis.								
7. Experimental Rese	arch Design – CRD- Analysis.								
8. Experimental Rese	arch design – RBD- Analysis.								
9. Experimental Rese	arch design – Latin square Design- Analysis.								
10. Placket-Burman D	esign for media optimization.								
11. Response Surface	Methodology for media optimization.								
REFERENCE BOOKS *									
 Khan and Khanum, (2008), Fundamentals of Biostatistics (3rd edition), Ukaaz Publication Kapur J.N. (2001), Mathematical Models in Biology and Medicine (1st edition), New age international Pvt. Ltd. Agarwal B.L. (2009), Basic statistics (5th edition), New age international Publishers Rastogi V. B. (2006), Fundamentals of Biostatistics, Ane Books 									
COURSE OUTCOMES**									
After completion of the course student will be able to									
•	aw graphs, charts using statistical software t	ools.							
	s of dispersion and central tendency.								
3. Analyse the data u									
4. Design experiment	tal set up using statistical software tools.								

Course	Programme Outcomes												Programme Specific Outcomes		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	1	3	-	-	-	-	-	-	1	2	2	1	1
CO 2	3	3	2	3	3	-	-	-	-	-	2	2	2	1	-
CO 3	2	3	3	2	2	2	-	-	-	-	-	3	2	1	-
CO 4	3	3	1	3	3	2	-	-	-	-	-	3	2	1	2

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Jung

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE DEPARTMENT OF BIOTECHNOLOGY

Sl. No	Category	Subject Code	Subject Title	Credits	Hours/ Week		Examination Marks			
110					L			CIE	SEE	TOTAL
1.	PCC	21UBT501C	Bioinformatics	03	3	0	0	50	50	100
2.	IPCC	21UBT502C	Genetic Engineering & Applications + lab	04	3	0	2	50	50	100
3.	PEC	21UBT5XXE	Elective –I	03	3	0	0	50	50	100
4.	OEC	21UXX5XXN	Open Elective-I	03	3	0	0	50	50	100
5.	PCCL	21UBT503L	Bioinformatics Lab	01	0	0	2	50	50	100
6.	AEC	21UHS521C	Quantitative Aptitude and Professional Skills	02	2	0	0	50	50	100
7.	INT	21UBT504I	Summer Internship – II	03	0	0	4	100	-	100
8.	HSMC	21UBT523C	Environmental Studies	01	1	0	0	50	50	100
			Total	20	15	0	08	450	350	800

B. E. V SEMESTER

Elective-I

21UBT511E: Environmental BT

21UBT512E: Nutraceuticals

21UBT513E: Computational Biology

21UBT514E: Protein Engineering and Drug Design

21UBT515E: Environmental BT

Open Elective-I

21UBT532N: Biofuels Technology

21UBT501C		Credits: 3		
L: T: P – 3-0-0	BIOINFORMATICS	CIE Marks: 50		
Total Hours/Week: 03		SEE Marks: 50		

UNIT-I

12 Hrs.

Introduction to Bioinformatics and Biological Database

Introduction to bioinformatics, Components of bioinformatics and interdisciplinary nature of bioinformatics, Classification of biological databases; Primary database: NCBI, GenBank, DDBJ and EMBL, PIR, Uniprot; Secondary databases: PROSITE, PRINTS, BLOCKS and Pfam; Structure databases: Protein Data Bank (PDB), MMDB, CATH, SCOP; Specialized databases: PubMed, OMIM, Metabolic Pathway-KEGG;ExPasy and PubChem databases, File format: GenBank flat file, PDB flat file. Tutorials: Practices on other primary and secondary databases

UNIT-II

10 Hrs.

Sequence alignment and database searches:

Introduction, Types of sequence alignment, Comparison between global and local alignment, Pairwise sequence alignment: Dot matrix analysis, Dynamic programming, Global alignment-Needleman-Wunch algorithm, Local Alignment-Smith & Waterman algorithm, Substitution matrix- BLOSUM and PAM; GAP Penalty; Low complexity regions;Word/k-tuple method- BLAST, FASTA.

Multiple Sequence Alignment:Introduction, applications of MSA; Types of MSA: Progressive method of MSA-Clustal W; Iterative method of MSA; Motifs and Patterns; Statistical models of MSA-Position Specific Scoring Matrix (PSSM) and Profiles.

Tutorials: Solving problems on pairwise sequence alignment

UNIT–III

10 Hrs.

Phylogenetic analysis and predictive methods using sequences

Introduction, concepts of trees, types of evolutionary trees, Rooted and unrooted trees, Steps in constructing phylogenetic trees, Tree building methods - Distance based methods: Neighbor Joining (NJ) method, Fitch-Margoliash (FM) method; Character based method: Maximum parsimony; Tree Evaluation methods, Phylogenetic Softwares.

Predictive Methods using sequences: Structure of Prokaryote and Eukaryote genes; Algorithms for Prokaryotic and Eukaryotic gene prediction, Web based tools for gene prediction (ORF finder, GenScan).Protein Secondary Structure Prediction, Tertiary Structure Predictions: Homology modelling.

Tutorials: Practices on prediction of phylogenetic trees

UNIT-IV

Plasmid mapping and primer designing &molecular modelling techniques

Restriction mapping, Web based tools: Restriction Mapper and REBASE. Utilities of Mac Vector and Vector NTI; Basics of Primer designing, Primer design softwares (PRIME3). Rational Approaches in Drug Design, molecular docking, deriving the Pharmacophoric Pattern, quantitative structure-activity relationship (QSAR), deriving bioactive conformations, Calculation of Molecular Properties, Dockingsoftwares (AUTODOCK, HEX)

Tutorials: Solving problems related to Restriction mapping and Primer designing

REFERENCE BOOKS *

- 1. Introduction to Bioinformatics Arthur Lesk, Oxford, 2nd Edition, 2006.
- 2. Bioinformatics Stuart M Brown, NYU Medical Center, NY USA. 2000.
- 3. Fundamental Concepts of Bioinformatics D E Krane & M L Raymer, Pearson, 2006.
- 4. Computational methods for macromolecular sequence analysis R F Doolittle. Academic Press, 1996.

COURSE OUTCOMES**

After completion of the course student will be able to

- 1. Importance of databases involved in bioinformatics along with their file formats
- 2. Will have idea on searching similar sequences in databases and find similarity between given set of sequences
- 3. Derive evolutionary relationship between genes and proteins by phylo-genetic analysis
- 4. Explain various statistical tools involved in predicting the structure of genes and proteins
- 5. The principle behind restriction mapping and primer designing
- 6. Different approaches involved in silico drug design

Course Outcomes		Programme Outcomes										Programme Specific Outcomes			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3	2	-	-	2	1	2	2				3	2	2	3
CO 2	3	2	2	2	2	1	2	-				3	2	2	3
CO 3	3	2	-	1	-	-	2	-				3	2	2	3
CO 4	2	2	-	1	-	2	-	-				3	1	-	2
CO 5	2	2	2	1	-	2	-	2				1	2	-	2
CO 6	2	1	2	2	2	2	1	1				1	1	1	1

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

21	UB	Т5	02	С

L: T: P – 3-0-2

Credits: (4: 0: 0) CIE Marks: 50

SEE Marks: 50

Total Hours/Week: 5

UNIT-I UNIT-II 10Hrs. UNIT-IV 10 Hrs. **REFERENCE BOOKS** Principal, Basaveshwar Engineering College BAGALKOT-587 102.

10 Hrs.

Introduction

Tools of genetic engineering- vectors in recombinant DNA technology, biology and salient features of vectors, Types of vectors - plasmids, cosmids, bacteriophage lambda vectors.

Enzymes in genetic engineering:

Introduction- Restriction Endonucleases-classification, mode of action, applications. Enzymes used in nucleic acid modification – Alkaline phosphatase, polynucleotide Kinase, Ligases, terminal deoxy nucleotidyl transferase

Nucleic acid hybridization and amplification

Methods of nucleic acid detection, Fluorescent In situ hybridization (FISH), colony hybridization, polymerase chain reaction (PCR), its types and applications, methods of nucleic acid hybridization, Southern, Western and Northern hybridization techniques.

Construction of cDNA libraries:

Construction of Complementary DNA (cDNA), genomic DNA libraries and cDNA libraries.

UNIT–III	10 Hrs.

Gene transfer techniques

Gene transfer techniques in plants, animals and microbes —Transformation, microinjection, electroporation, microprojectile system, and liposome mediated transfer, embryonic stem cell method. Agrobacterium-mediated gene transfer in plants – Ti & Ri Plasmid: structure and functions, Ti based vectors- Binary vectors and Cointegrate vectors.

Transgenic science and genetic improvement:

Transgenic science in plant improvement, Antisense RNA technology (Flavr savr tomatoes). Application of plant transformation for productivity and performance – Herbicide resistance glyphosate. insect resistance - Bt genes(*Bacillus thuringiensis* and its mode of action), Cry proteins mechanism of action.

Gene therapy

Introduction, Methods of Gene therapy-gene targeting, gene augmentation, assisted killing, prodrug therapy and gene silencing. Gene therapy in the treatment of cancer, SCID, muscular dystrophy. Use of thrombolytic agents in blood clotting. Challenges in gene therapy.

Applications:

Engineering microbes for the production of Insulin, growth hormones, monoclonal antibodies.

- 1. Molecular Biotechnology, Principles and applications of Recombinant DNA by Bernard R Glick and Jack J Pasternak, second edition, CBS Publishers, 2012.
- 2. Recombinant DNA by Watson, et al., second edition, Freeman Publishers 2010.
- 3. Principles of gene manipulation, Primrose S.B., Blackwell Scientific Publications, 2010.
- 4. From Genetics to Gene Therapy the molecular pathology of human disease by David S Latchman, BIOS scientific publishers, 2010.
- 5. Biotechnology Expanding Horizon, B.D.Singh, 3rd revised edition, Kalvani Publishers, 2010
- 6. https://onlinecourses.swayam2.ac.in/cec19 bt02/preview

LAB

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

- 1. Transformation
- 2. Blue white colony screening
- 3. Thermal denaturation of DNA
- 4. Restriction Digestion
- 5. Ligation Experiment.
- 6. Southern Blotting Agarose Gel Electrophoresis
- 7. Electroblotting and analysis
- 8. Lyophilization of biologic samples (fluids, microbial samples)
- 9. SOP for UV-Spectrophotometer
- 10. SOP for PCR

PCR (Amplification with specific primers)

COURSE OUTCOMES

- 1. Apply the knowledge of various tools used in genetic engineering experiments.
- 2. Select and apply the knowledge of methods of nucleic acid detection, hybridization and amplification and library construction in research.
- 3. Identify different methods of various gene transfer techniques in plants, animals and microbes
- 4. Use knowledge of various strategies of Gene therapy in therapeutics and engineer microbes for the production of biopharmaceuticals

Course Outcomes		Programme Outcomes											Programme Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	-	1	-	2	3	-	2	-	-	-	-	2	1	3	1
CO 2	-	1	-	-	3	-	1	-	-	-	-	2	2	3	1
CO 3	-	1	-	2	3	1	1	-	-	-	-	2	3	3	1
CO 4	-	1	-	2	3	2	1	-	-	-	-	2	3	3	1

	ENVIRONMENTAL BT		
L: T: P – 3-0-0	ENVIRONIVIENTAL DI	CIE Mar	
Total Hours/Week: 3		SEE Mar	KS: 50
	UNIT-I		10 Hrs.
Microorganisms			
•	nental BT. Characteristics of soil, microbial flora o	of soil, interad	ctions
among soil microorganisms,	biogeochemical role of soil microorganisms.		
Bioaccumulation of Toxican	ts		
Characteristics of Xenobio	otics, Relationship of Bioaccumulation with	Chemical	Structure
	ulation, Process of toxicants uptake, Factors affe	ecting bioacc	umulatior
measurement of bioaccumul	lation.		
	UNIT–II		12Hrs.
Biological Treatment of Was	stewater		
Waste water characteristic	s BOD, COD, Primary & Secondary treatment	t, nano-filtra	ition, ulta
filration and microfiltration.	Microbial removal of phosphorous and Nitroge	n, Nutrient r	removal b
Riomass production Waste	water treatment of food processing industrie	es like sugar	^r factorie
bioinass production waste	tato processing industries, dairy industries, bev	verages indu	stries, an
•	tato processing moustnes, dany moustnes, bet		
•	tato processing industries, dairy industries, bet		
vegetable oil industries, po	tato processing industries, dany industries, ber		
vegetable oil industries, po distilleries. Solid Waste Management	osition of urban solid wastes, aerobic treatment	t, anaerobic	treatmen
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp			
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp	osition of urban solid wastes, aerobic treatment waste management through Biotechnologica		
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid	osition of urban solid wastes, aerobic treatment waste management through Biotechnologica		
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic	osition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules		involvin
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining	osition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules	al processes	involvin 10 Hrs.
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining	osition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III	al processes	involvin 10 Hrs.
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- typ	osition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III	al processes	involvin 10 Hrs.
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation	osition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III	al processes f metal, phos	involvin 10 Hrs.
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, w	oosition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III es, methods of bioleaching, Microbial recovery of	al processes f metal, phos dicators),	involvin
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, w Bioremediation using microb	osition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III es, methods of bioleaching, Microbial recovery of vater and soil, Biomonitors of environment (Bioin	al processes f metal, phos dicators),	involvin
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, w Bioremediation using microb	oosition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III es, methods of bioleaching, Microbial recovery of vater and soil, Biomonitors of environment (Bioin bes, Phytoremediation, Biofilms its applications. E	al processes f metal, phos dicators),	involvin 10 Hrs. sphate,
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, w Bioremediation using microb	osition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III es, methods of bioleaching, Microbial recovery of vater and soil, Biomonitors of environment (Bioin bes, Phytoremediation, Biofilms its applications. E l activities, Bio-augmentation. UNIT–IV	al processes f metal, phos dicators),	involvin 10 Hrs. sphate,
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, w Bioremediation using microbia Naturally occurring microbia Biotechnology in Biodiversit	osition of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III es, methods of bioleaching, Microbial recovery of vater and soil, Biomonitors of environment (Bioin bes, Phytoremediation, Biofilms its applications. E l activities, Bio-augmentation. UNIT–IV	al processes f metal, phos dicators), Bio-stimulatio	involvin 10 Hrs. sphate, on of 10 Hrs.
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, w Bioremediation using microbia Naturally occurring microbia Biotechnology in Biodiversit Value of biodiversity, threa	position of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III es, methods of bioleaching, Microbial recovery of vater and soil, Biomonitors of environment (Bioin bes, Phytoremediation, Biofilms its applications. E l activities, Bio-augmentation. UNIT–IV cy Conservation	al processes f metal, phos dicators), Bio-stimulatio	involvin 10 Hrs. sphate, on of 10 Hrs. nservation
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, w Bioremediation using microbia Naturally occurring microbia Biotechnology in Biodiversit Value of biodiversity, threa Approaches to Bioresource	position of urban solid wastes, aerobic treatment waste management through Biotechnologica cal wastes, MoEF rules UNIT–III es, methods of bioleaching, Microbial recovery of vater and soil, Biomonitors of environment (Bioin bes, Phytoremediation, Biofilms its applications. E I activities, Bio-augmentation. UNIT–IV cy Conservation ats to biodiversity, Biosphere reserves and Ec	al processes f metal, phos dicators), Bio-stimulatio cosystem Col ocesses for b	involvin 10 Hrs. sphate, on of 10 Hrs. nservation ioresourc
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, w Bioremediation using microbia Naturally occurring microbia Biotechnology in Biodiversit Value of biodiversity, threa Approaches to Bioresource	position of urban solid wastes, aerobic treatment waste management through Biotechnological cal wastes, MoEF rules UNIT–III es, methods of bioleaching, Microbial recovery of vater and soil, Biomonitors of environment (Bioin bes, Phytoremediation, Biofilms its applications. E l activities, Bio-augmentation. UNIT–IV cy Conservation ats to biodiversity, Biosphere reserves and Ec conservation programme, Biotechnological pro	al processes f metal, phos dicators), Bio-stimulatio cosystem Col ocesses for b	involvin 10 Hrs. sphate, on of 10 Hrs. nservation ioresourc
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- typ petroleum. Bioremediation Major contaminants of air, w Bioremediation using microbia Naturally occurring microbia Biotechnology in Biodiversity Value of biodiversity, threa Approaches to Bioresource assessment, BT in ex situ co	position of urban solid wastes, aerobic treatment waste management through Biotechnological cal wastes, MoEF rules UNIT–III es, methods of bioleaching, Microbial recovery of vater and soil, Biomonitors of environment (Bioin bes, Phytoremediation, Biofilms its applications. E l activities, Bio-augmentation. UNIT–IV cy Conservation ats to biodiversity, Biosphere reserves and Ec conservation programme, Biotechnological pro	al processes f metal, phos dicators), Bio-stimulatio cosystem Col ocesses for b	involvin 10 Hrs. sphate, on of 10 Hrs. nservation ioresourc

Credits: 3

22UBT511E

- 1. Environmental Biotechnology by Pradipta Kumar Mahopatra.
- 2. Text book of microbiology by R C Dubey and D K Maheshwari
- 3. Environmental Biotechnology by Foster C.F., John ware D.A., Ellis Horwood Limited, 1987.
- 4. Bioprocess Technology- fundamentals and applications, S O Enfors & L Hagstrom (1992), RIT,.
- 5. Comprehensive Biotechnology Vol. 1-4: M.Y. Young (Eds.), Pergamon Press.
- 6. Industrial Microbiology : L.E. Casida, Willey Eastern Ltd., 1989.
- 7. Industrial Microbiology : Prescott & Dunn, CBS Publishers, 1987.
- 8. Biotechnology, Economic & Social Aspects : E.J. Dasilva, C Ratledge & A Sasson, Cambridge

Univ. Press, Cambridge.

COURSE OUTCOMES**

- 1. Understand issues and scope of Environmental BT and concepts of Bioaccumulation.
- 2. Develop different treatment methods for waste water by using BT approach.
- 3. Develop different treatment methods for solid waste by using BT approach.
- 4. Apply the knowledge of bioleaching for metal recovery and bioremediation processes to remove environmental contaminants.
- 5. Understand the Value of biodiversity and threats to biodiversity.
- 6. Apply the knowledge of BT in biodiversity conservation.

Course													Programm	ne	Specific
Outcomes		Programme Outcomes										Outcomes			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	2	3	2	2				2		3		1	2	3	1
CO 2	2	3	2	1				1	2				3	3	1
CO 3	2	3	2	1				1	2				3	3	1
CO 4	1	3	2	3				2	2	3			2	3	
CO 5								2		3		3			
CO 6	1	3	2	2					2	2			1	3	

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

22UBT512E		Credits: 3
L: T: P – 3-0-0	NUTRACEUTICALS	CIE Marks: 50
Total Hours/Week: 3		SEE Marks: 50

UNIT-I

10 Hrs.

10Hrs.

10 Hrs.

Introduction to Nutraceutical and dietetics

Organizational elements, classification of nutraceuticals, dietary supplements, fortified foods, functional foods and phytonutraceuticals. Scope involved in the industry, Indian and global scenario. Recommended dietary intake (RDA), acceptable dietary intake, nitrogen balance, protein efficiency ratio, net protein utilisation. Basics of energy balance - Basal Metabolic Rate (BMR), Body Mass Index (BMI) and Standard Dynamic Action (SDA) with special reference to nutraceutical industry.

UNIT–II

Nutrition related diseases and disorders

Carbohydrates, Protein, amino acids, Fat, vitamins and minerals - Excess and deficiency, symptoms, prevention and management.Role of nutraceuticals with special reference to diabetes mellitus, hypertension, hypercholesterolemia, cancer, glands in the prevention and treatment. Concept of antioxidants - use of antioxidants as dietary supplements in prevention and treatment of cancer, obesity and stress.Role of nutraceuticals and functional foods in pediatrics, geriatrics, sports, pregnancy and lactation.

UNIT–III

Nutraceuticals of microbial, plant and animal origin

Concept of prebiotics and probiotics - principle, mechanism, production and technology involved, applications - examples of bacteria used as probiotics, use of prebiotics in maintaining the useful microflora - extraction from plant sources. Synbiotics for maintaining good health.Algae as source of omega - 3 fatty acids, antioxidants and minerals - extraction and enrichment. Plant secondary metabolites, classification and sub-classification - Alkaloids, phenols, Terpenoids. Animal metabolites - Sources and extraction of nutraceuticals of animal origin. Examples: chitin, chitosan, glucosamine, chondroitin sulphate and other polysaccharides

UNIT-IV

10 Hrs.

Biotechnology in Phytonutraceuticals

Role of medicinal and aromatic plants in nutraceutical industry – propagation - conventional and tissue culture, cultivation, post harvest technology and strategies for crop improvement, development of high yielding lines and yield enhancement, plant genomics and metabolomics. Biofortification and nutritional enhancement.GM foods with enhanced nutraceutical properties.Golden rice, GM Tomatoes

REFERENCE BOOKS*

- 1. Israel Goldberg (Ed.) (1999) Functional foods, designer foods, pharma foods, Nutraceuticals, Aspen publishers Inc., USA.
- 2. L. Rapport and B. Lockwood, Nutraceuticals, Pharmaceutical Press., 2nd Edition, 2002.
- 3. M. Maffei ,Dietary Supplements of Plant Origin, Taylor & Francis,1 st Edition,2003.
- 4. Shahidi and Weerasinghe, Nutraceutical beverages Chemistry, Nutrition and health Effects, American Chemical Society, 1 st Edition, 2004.
- 5. Richard Neeser& J. Bruce German (2004) Bioprocesses and Biotechnology for Functional Foods and Nutraceuticals, Jean, Marcel Dekker, Inc.
- 6. TimothtS. Tracy, Richard L. Kingston, Herbal Products 2nd Edition, 2007.

COURSE OUTCOMES**

- 1. To be aware of basic concepts of nutraceuticals and nutrition.
- 2. To have a general idea of scope of nutraceuticals and functional foods.
- 3. To have brief idea about nutrition related health disorders and the role of Nutraceuticals.
- 4. To classify nutraceuticals and the role of nutraceuticals among different age groups.
- 5. To learn about the basic aspects of nutraceuticals derived from microbial, plant and animal origin.
- 6. To know about the role of biotechnology in production of plant secondary metabolites

Course Outcomes		Programme Outcomes									Programme Specific Outcomes				
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3	2	-	-	2	1	2	2				3	2	2	3
CO 2	3	2	2	2	2	1	2	-				3	2	2	3
CO 3	3	2	-	1	-	-	2	-				3	2	2	3
CO 4	2	2	-	1	-	2	-	-				3	1	-	2
CO 5	2	2	2	1	-	2	-	2				1	2	-	2
CO 6	2	1	2	2	2	2	1	1				1	1	1	1

21UBT513E		03 - Credits (3 : 0 : 0)
Hours / Week : 03	COMPUTATIONAL BIOLOGY	CIE Marks : 50
Total Hours : 40		SEE Marks : 50

UNIT – 1	12 Hrs
Nature and scope of Computational Biology : Basic algorithms in Computational Bio Computer algorithm, Fibonacci problem, Dynamic Programming, Time and sp algorithms, Laplace's Rule. Search Algorithms: Random walk, Hill climbing, sp Combinatorial Pattern Matching: Hash Tables, Repeat Finding, Exact Pattern Algorithm: Basic Concepts, Reproduction, Cross over, Mutation, Fitness Value, Opt Applications of GA in bioinformatics.	pace complexity of imulated annealing. Matching; Genetic
UNIT – 2	8 Hrs
Combinatorial Pattern Matching : Hash Tables, Repeat Finding, Exact Pattern Matching Algorithm: Basic Concepts, Reproduction, Cross over, Mutation, Fitness Value, Optimiz Applications of GA in bioinformatics.	0,
UNIT – 3	10 Hrs
UNIT – 3 Hidden Markov Model: Markov processes and Markov Models, Hidden Markov M Backward Algorithms, Most probable state path: Viterbi algorithm, Parameter Est Baum-Welch Algorithm, Applications of profile HMMs for multiple alignment of pro genes in the DNA.	Nodels. Forward and imation for HMMs:-
Hidden Markov Model: Markov processes and Markov Models, Hidden Markov M Backward Algorithms, Most probable state path: Viterbi algorithm, Parameter Est Baum-Welch Algorithm, Applications of profile HMMs for multiple alignment of pro	Nodels. Forward and imation for HMMs:-

REFERENCE BOOKS

- Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith, 1999, Pearson Education.
- Arthur M.Lesk, Introduction to Bioinformatics, Oxford University Press, New Delhi, 2003.
- Higgins and W.Taylor (Eds), Bioinformatics-Sequence, Structure and databanks, Oxford University Press, New Delhi, 2000
- An introduction to bioinformatics algorithms by Neil C. Jones, Pavel Pevzner. MIT Press. 2004 2.
- Biological sequence analysis: Probabilistic models of proteins and nucleic acids by Richard Durbin, Eddy, Anders Krogh, 1998

Algorithms for Molecular Biology by Ron Shamir Lecture, Fall Semester, 20014.

- 1. Bioinformatics- a practical guide to the analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellette, B.F., 1998, John Wiley & Sons, UK.
- 2. Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith, 1999, Pearson Education.
- 3. Arthur M.Lesk, Introduction to Bioinformatics, Oxford University Press, New Delhi, 2003.
- 4. D.Higgins and W.Taylor (Eds), Bioinformatics-Sequence, Structure and databanks, Oxford University Press, New Delhi, 2000.
- 5. Bioinformatics: the machine learning approach by Pierre Baldi, Søren Brunak. MIT Press. 2001 2.
- 6. Bioinformatics: Sequence and Genome Analysis: by David Mount, University of Arizona, Tucson

COURSE OUTCOMES

After completion of the course student will be able to

- 1) Understand the nature, scope of computational biology and biological and computer algorithms.
- 2) Know about the Combinatorial Pattern Matching, Genetic algorithms and their applications.
- 3) Analyze various Markov processes and Markov Models.

4) Learn about the Insilico Drug Design and Biopython applications in Computational Biology

Course Outcomes		Programme Outcomes											Programme Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3	3	3									2	2	1	
CO 2	2	3	3									2	2	1	
CO 3	3	3	3									1	2	1	
CO 4	3	3	3									1	2	1	

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

21	U	BT	5	14	E	

L:T:P – 3:0:0

Total Hours/Week: 03

Total Hours/Week: 03		SEE Marks: 50	
	UNIT-I	10 H	ours
alignment, domain architectur Protein structure prediction Primary structure and its deter profiles, patterns, fingerprints quaternary structure, method modification. Protein engineering and desig Methods of protein isolation, synthesis of peptides, use of p	purification and quantitation; large scale synthesis eleptides in biology, methods of detection and analy	ermination of motifs, rays, tertiary structure ost translational of proteins, design ar sis of proteins. Protei	e, nd
•	alter primary structure of proteins, examples of en	gineered proteins,	
protein design, principles and	examples. UNIT–II	10	Hrs.
Conformations, Molecule Sup Mapping, Estimating Biologica	ture Visualization, Conformation Generation, Derivi erposition and Alignment, Deriving the Pharmacoph al Activities, Molecular Interactions: Docking, Calcula as (no derivation), Examples of Small Molecular Moc alarial Agents	noric Pattern, Recepto ation of Molecular	
	UNIT-III	10	Hrs.
Conceptual Frame and Metho the "Bioactive Conformation", Similarities and Superimpositie Key and the Role of the Molec Perspectives. Computer assisted new lead o Introduction, Basic Concepts, Approaches to Discover New F	aches in Drug Design, Molecular Modeling: The Seco dology of Molecular Modeling, The Field Currently (Molecular Mimicry and Structural Similarities, Mole on Techniques, Rational Drug Design and Chemical cular Model, Limitations of Chemical Intuition Major design Molecular Recognition by Receptor and Ligand Desi Functions, Approaches to the Cases with known and	Covered, Importance ecular Mimicry, Struc Intuition, An Importa r Milestones and Futu ign, Active Conformat	tural nt ıre
structure.			
	UNIT-IV	10	Hrs.

Docking methods

Program GREEN Grid: Three -Dimensional Description of Binding Site Environment and Energy Calculation, Automatic Docking Method, Three-Dimensional Database Search Approaches, Automated Structure Construction Methods, Structure Construction Methods with known Three-Dimensional Structure of the Receptor, Structure Construction in the case of Unknown Receptor Structure. Scope and Limitations, Points for Consideration in Structure, Construction Methods, Handling of X-Ray Structures of Proteins, Future Perspectives, Types of programs available for molecular modeling-scope and limitations-interpretation of results.

Computer - assisted drug discovery

The Drug Development Process, Introduction, The Discovery and Development Process, New Lead Discovery Strategies, Composition of Drug Discovery Teams, The Practice of Computer-Assisted Drug Discovery (CADD), Current Practice of CADD in the pharmaceutical Industry, Management Structures of

CADD Groups, Contributions and Achievements of CADD Groups, Limitations of CADD Support, Inherent Limitations of CADD Support, State of Current Computational Models, Software and Hardware Constraints.

REFERENCE BOOKS *

- 1. Bioinformatics Methods & Applications: Genomics, Proteomics & Drug Discovery, S C Rastogi, Mendiratta & P Rastogi, PHI,4th Edition, 2013
- 2. Moody P.C.E. and A.J. Wilkinson Protein Engineering, IRL Press, Oxford, 3rd Edition, 2010.
- 3. Creighton T.E. Proteins, Freeman W.H. Second Edn, 1993.
- 4. Branden C. and Tooze R. Introduction of protein structure, Garland, 1993.
- 5. The molecular modeling perspective in drug design by N Claude Cohen, 2008, Academic Press.

COURSE OUTCOMES**

- 1. Ability to study protein structure prediction and protein engineering and design
- 2. Able to understand molecular modeling
- 3. Able to know computer assisted new lead design
- 4. Able to study docking methods and computer assisted drug discovery

Course Outcomes		Programme Outcomes (POs)												Program Specific Outcomes (PSOs)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3				
C01	1	-	2	-	1	1	2	2	-	-	-	1	2	1	1				
CO2	1	-	2	-	-	2	2	3	-	-	-	1	2	1	2				
CO3	-	-	1	1	2	-	2	2	-	-	-	1	2	1	-				
CO4	2	-	2	-	-	1	2	2	-	-	-	1	2	1	-				

	ECHNOLOGY
L: T: P – 3-0-0	CIE Marks: 50
Total Hours/Week: 03	SEE Marks: 50

UNIT-I	10 Hrs.
Biochemistry of biofuels and energy resources	•
Basic principle of light energy conversion to chemical energy &carbon fixation. Bio	ochemistr
involved in conversion of sugars to alcohols. Renewable and non-renewable resources.	
Biofuels	
Introduction to Biofuels - definition, advantages and disadvantages. Biofuel life cycle. Bior energy core and its different mode of utilization. Conventional fuels and their envi impacts. Modern fuels and their environmental impacts. Biofuel energy content. World s	ronmenta
biofuel production and use.	
UNIT–II	12Hrs.
Biofuel feed stocks	
dedicated energy crops, municipal solid waste and paper waste. Lipid feed stocks :-Oils with examples, Algae, Waste oil, Animal fats. Next generation feed stocks. Environment of feed stocks. Types of biofuels First generation biofuels-vegetable oil biodisel, bioalcohols, bioethers, biogas syngas, soli Second generation biofuels and third generation biofuels.	al impact
UNIT–III	10 Hrs.
Technologies for biofuels	
Historical background. Biochemical platform – bioethanol production, standardization, and properties of bioethanol. Thermochemical platforms - biodiesel production, stand properties and emissions of biodiesel. BtL fuels -production, properties and emissions. Bio processing and uses. Converting solid wastes to pipeline gas. Biomethanation, Microbial Blending of biofuels	ardization ohydrogei

Biofuels in perspective

Integrated refining concepts with reference to ethanol production. Economic feasibility of producing biodisel, Issues with biofuel production & use. Impact of biofuel in global climate change & food production. 1st versus 2nd generation biofuels.. Strategies for new vehicle technologies. Current research on biofuel production. Market barriers of biofuels.

REFERENCE BOOKS*

- 1. Foster C. F., John ware D.A.Environmental Biotechnology by, Ellis Horwood Limited, 1987.
- 2. Larry Anderson and David A Fuels from Waste by Tillman. Academic Press, 1977.
- 3. Biotechnology, Economic & Social Aspects: E.J. Dasilva, C Ratledge & A Sasson, Cambridge Univ. Press, Cambridge, 2000
- 4. Environmental Biotechnology by Pradipta Kumar Mahopatra, 2007.

COURSE OUTCOMES**

After completion of the course student will be able to

- 1. Ability to understand the basic principle involved in bioconversion process in energy and to differentiate the conventional fuels with biofuels .
- 2. Able to diagnose the types of feed stocks used for biofuels.
- 3. Able to produce the biofuels (biodiesel, bioalcohol biogas and biohydrogen) using current technologies and innovations involved
- 4. Able to understand and recall current issues related with production and use of biofuels, Research opportunities, economic feasibility of the biofuels

Course				Pr	ogra	mme	Outo	ome	s					ramme Sp Outcomes	
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	-	-	2		1	-	-	-	-	1	3	2	-
CO 2	3	3	-	3			2	-	-	-	-	1	2	-	-
CO 3	3	3	-	3	3		2	-	-	-	-	3	-	2	-
CO 4	3	3	-	3			2	-	-	-	-	3	-	1	-

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

21**UBT503L**

<u>L: T: P –</u> 0-0- 2

Total Hours/Week: 2

SEE Marks: 50

LIST OF EXPERIMENTS

- 1. Bibliographic search from PUBMED, SCIRUS and MEDMINER
- 2. Sequence retrieval from Nucleic acid and Protein databases.
- 3. Sequence searches using BLAST Retrieval of homologs, paralogs, orthologs, and Xenologs
- 4. Pair wise comparison of sequences Analysis of parameters affecting alignment.
- 5. Multiple alignments of sequences and pattern determination using PROSITE
- 6. Evolutionary studies / Phylogenetic analysis Analysis of parameters affecting trees.
- 7. Identification of functional sites in Genes / Genomes.
- 8. Secondary structure prediction of proteins and comparison with PDB.
- 9. Restriction mapping: Analysis of maps for suitable molecular biology experiment.
- 10. Primer Design: Factors affecting primer design.
- 11. PDB structure retrieval and visualization: Analysis of homologous structures.
- 12. Determination of ligand-protein interactions using SPDBV/ LIGPLOT
- 13. Superposition of structures Calculation of RMSD.
- 14. Docking studies Analysis of substrate / ligand binding using homologous structures.

REFEENCE BOOKS*

- 1. Bioinformatics Andreas D Boxevanis. Wiley Interscience, 1998.
- 2. Bioinformatics David W Mount, cold spring harbor, 2001.
- 3. Bioinformatics A biologists guide to biocomputing and the internet. Stuart M brown,
- 4. Fundamental Concepts of Bioinformatics D E Krane & M L Raymer, Pearson, 2006.
- 5. Computational methods in Molecular Biology S.L.Salzberg, D B Searls, S Kasif, Elsevier, 1998.
- 6. Bioinformatics methods and applications: Genomics, proteomics and drug Discovery s c Rastogi, N. mendiratta & prastogi, phi, 2006.

COURSE OUTCOMES**

- 1. Ability to Search literature and sequence databases
- 2. Ability to retrieve and search sequences from databases
- 3. Ability to align pair wise and multiple sequences
- 4. Ability to identify evolutionary and relationships and functional sites in genomes
- 5. Ability to evaluate primer designing and restriction mapping
- 6. Ability to docking and superimpose the structures

Course Outcomes					Prog	Programme Specific Outcomes									
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3	3	3	-	3	1	-	3				3	3	3	1
CO 2	3	3	3	-	3	1	-	-				3	2	3	1
CO 3	3	3	2	2	3	1	1	-				3	3	3	1
CO 4	3	3	2	-	3	-	1	-				3	2	3	2
CO 5	3	3	2	1	3	1	-	2				3	3	3	2
CO 6	3	3	3	2	3	1	-	1				3	2	3	1

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

Hours / Week : 01	ENVIRONMENTAL STUDIES	UI - Cleuit	s (1: 0 : 0)
		CIE Mar	ks : 50
Total Hours : 15		SEE Mar	rks : 50
	UNIT – 1		04 Hrs.
Natural Resources:			
Human activities and thei	r impacts. EIA, Renewable Energy : Solar energy,	Wind energy,	Hydropower,
	al energy, Geo thermal energy, Biomass energy, Bi	ogas, Biodiesel	, Bioethanol,
Hydrogen as fuel.			
Non renewable Energy: Co	al, Petroleum, Natural gas, Nuclear energy.		
	UNIT – 2		04 Hrs.
Environmental Pollution:			
	ality standards, water borne diseases, Fluoride pro	hlem Air nollu	ition Noise
pollution. Effect of electror			
	lagnetie waves.		
Sustainable future: Conc	ept of sustainable development, threats to sus	stainability, str	ategies for
sustainable development. I	nvironment economics – concept of green building,	Circular Econo	
			omy.
	UNIT – 3		
Current Environmental Iss	UNIT – 3 Jes of concern:		omy. 03 Hrs.
Current Environmental Iss	ues of concern:		03 Hrs.
Greenhouse Effect- Greenh			03 Hrs.
Greenhouse Effect- Greenh rain, Eutrophication	u es of concern: nouse gases and Global Warming, Climate change, c		03 Hrs.
Greenhouse Effect- Greenh	u es of concern: nouse gases and Global Warming, Climate change, c		03 Hrs.
Greenhouse Effect- Greenh rain, Eutrophication	u es of concern: nouse gases and Global Warming, Climate change, c		03 Hrs.
Greenhouse Effect- Greenh rain, Eutrophication	ues of concern: house gases and Global Warming, Climate change, c ation rules & regulations UNIT – 4		03 Hrs.
Greenhouse Effect- Greenh rain, Eutrophication Environmental policy legisl Fundamentals of Waste ma	ues of concern: house gases and Global Warming, Climate change, c ation rules & regulations UNIT – 4	ozone layer dep	03 Hrs. Netion, Acid 04Hrs.
Greenhouse Effect- Greenh rain, Eutrophication Environmental policy legisle Fundamentals of Waste management:	ues of concern: house gases and Global Warming, Climate change, c ation rules & regulations UNIT – 4 anagement:	ozone layer dep	03 Hrs. Netion, Acid 04Hrs.
Greenhouse Effect- Greenh rain, Eutrophication Environmental policy legisle Fundamentals of Waste management:	ues of concern: nouse gases and Global Warming, Climate change, c ation rules & regulations UNIT – 4 anagement: Sources, classification, characteristics, collection & azardous waste management and handling.	ozone layer dep	03 Hrs. Netion, Acid 04Hrs.
Greenhouse Effect- Greenh rain, Eutrophication Environmental policy legisle Fundamentals of Waste management: and processing methods. H Concept of waste water tree	ues of concern: house gases and Global Warming, Climate change, c ation rules & regulations UNIT – 4 Anagement: Sources, classification, characteristics, collection & azardous waste management and handling. atment, Bioremediation.	ozone layer dep & transportatio	03 Hrs. Netion, Acid 04Hrs. n, disposal,
Greenhouse Effect- Greenh rain, Eutrophication Environmental policy legisle Fundamentals of Waste management: and processing methods. H Concept of waste water tree	Jes of concern: nouse gases and Global Warming, Climate change, c ation rules & regulations UNIT – 4 Anagement: Sources, classification, characteristics, collection & azardous waste management and handling. atment, Bioremediation. nent (Case studies: Cement, plastic, chemical, E–w	ozone layer dep & transportatio	03 Hrs. Netion, Acid 04Hrs. n, disposal,

REFERENCES

- 1. Benny Joseph "Environmental Studies" Tata McGraw Hill, 2005
- 2. Dr. D. L. Manjunath, "Environmental Studies" Pearson Education, 2006
- 3. Koushik and Koushik "Environmental Science & Engineering" New Age International Publishers, New Delhi, 2006
- 4. Meenakshi "Environmental Science & Engineering" Pranticce Hall of India, 2006

COURSE OUTCOMES

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

After completion of the course the students shall be able to,

- Ability to recognize natural resources and its uses.
- Able to understand pollution and its effects on environment and to implement sustainable future in the work place.
- Ability to understand current environmental issues.
- Able to apply the waste management techniques in various fields

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Course					Prog	gram	Out	come	es				Program Specified Outcomes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	-	1	-	-	-	2	3	-	-	-	-	3	1	-	-		
CO 2	2	-	-	-	-	-	3	-	-	-	-	3	1	-	-		
CO 3	-	2	-	-	-	2	2	-	-	-	-	3	1	-	-		
CO 4	-	-	-	1	-	2	2	1	-		-	3	1	-	1		

Question Paper Pattern for SEE:

Question is of Objective type

Duration of exam is 1 hour 30 mins

50 questions covering all the four units. Each question carries one mark

B. E. VI SEMESTER

Sl.	Category	Subject Code	Subject Title	Credits	Η	our	s/	Exan	ninatio	on Marks
No					V	Veel	K			
					L	Т	Р	CIE	SEE	TOTAL
1.	BSC	21UBT601C	Bioprocess and	03	3	0	0	50	50	100
			Bioreaction							
			Engineering							
2.	PCC	21UBT602C	Upstream Processing	03	3	0	0	50	50	100
			Technology							
3.	PCC	21UBT603C	Biotransformation and	03	3	0	0	50	50	100
			Enzyme Technology							
4.	PEC	21UBT6XXE	Elective-II	03	3	0	0	50	50	100
5.	OEC	21UXX6XXN	Open Elective –II	03	3	0	0	50	50	100
6.	OEC	21UXX6XXN	Open Elective –III	03	3	0	0	50	50	100
7.	PCCL	21UBT604L	Biokinetics & Enzyme	01	0	0	2	50	50	100
			Technology Lab							
8.	MP	21UBT605P	Mini Project	02	0	0	4	50	50	100
		Total		21	18	0	6	400	400	800

Elective-II

21UBT621E: Biofuels Technology

21UBT622E: Food Biotechnology

21UBT623E: Biopython

21UBT624E: Genomics & Proteomics

21UBT625E: Bioreactor Design

Open Electives –II

21UBT632N: Environmental Technology

Open Electives –III

21UBT633N: Industrial Safety

21UBT601C
L:T:P – 3:0:0

Total Hours/Week: 03

BIOPROCESS AND BIOREACTION ENGINEERING

Credits: 03 CIE Marks: 50 SEE Marks: 50

UNIT-I

10 Hrs.

Kinetics of Homogeneous reactions:

Basic Concepts of Bioreaction and bioprocess engineering, Concentration dependent term of a rate equation, Rate Constant. Representation of elementary reaction and non-elementary reactions, Kinetic Models of Non elementary Reactions, Testing Kinetic Models. Temperature-dependent term of a rate equation: Temperature dependency from Arrhenius law, Collision theory, Transition state theory, Thermodynamic approach, Activation Energy.

Interpretation of Batch Bioreactor Data:

Constant volume batch reactor, Integral method of analysis of data -first order, second order, zero order reactions, fractional life, homogenous catalysed reactions, irreversible reaction in series, irreversible reactions in parallel, reactions of shifting order, autocatalytic reactions, reversible reactions, differential method of analysis of data.

UNIT-III

UNIT-II

10 Hrs.

10 Hrs.

Ideal Bioreactor and bioprocess models:

Ideal Batch Reactor, General features of reactors, Basic design equation, relation between Concentration and conversion, Batch cycle time, Space-Time and Space-Velocity, Mixed flow reactor, Plug flow Reactor, Holding time and space time for flow reactors

Design for Single Reactions: Size comparison of single reactors. Growth kinetics quantification Unstructured models for microbial growth- Substrate limited growth-models with growth inhibitors, product formation kinetics. Monod kinetics

UNIT–IV

10 Hrs.

Analysis of Bioreactors:

Various types of reactors for immobilised cell and enzyme systems, Multiple reactors like CSTR in series /CSTR in Parallel; MFR in series/ MFR in Parallel, PFR in series/ PFR in parallel, Reactors of different types in series, Challenges and issues in bioprocess industries- mixing, interphase mass and heat transfer, Bioreactor instrumentation and control, bioreactor considerations for animal cell cultures and plant cell cultures.

Reference Books *

- 1. Scott Fogler, H (2016) Elements of Chemical Reaction Engineering, 6th edn., Prentice Hall India Pvt. Ltd.
- 2. Levenspiel O (2006) Chemical Reaction Engineering, Wiley Eastern, 3rd edn, New Delhi.
- 3. Kargi and Shuler (2015) Bioprocess Engineering. 3nd edn., Prentice Hall PTR.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

- 4. Bailey J E and Ollis DF (2010) Biochemical Engineering Fundamentals, 2nd edn. Mc Graw-Hill.
- 5. Charles D. Holland (1990) Fundamentals of Chemical Reaction Engineering, John Wiley and Sons.
- 6.Pauline M Doran., Bioprocess Engineering Principles, 2nd Edition, Academic Press, USA, 2013.
- 7.Tapobrata Panda., Bioreactors: Analysis and Design, 1st Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2011.
- 8. Indian Standards Institution, Code for Unfired Pressure Vessels, IS 2825.
- 9.Bhattacharya, B.C, Introduction to Chemical Equipment Design, CBS Publications, 1985.
- 10. Perry's Chemical Engineers Handbook. 7th Edition Mc Graw Hill Publications

Course Outcomes**

After completion of the course student will be able to

- 1. Understand the basic concept of reaction engineering to solve bioprocess problems
- 2. Predict the order and rate of the different reactions.
- 3. Analyze the batch bioreactor data for different reactions.
- 4. Apply the suitable bioreactor for different biochemical reactions.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Prog	gram	me (Dutco	ome	s (PC	s)				gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	3	2	2							2	2		
CO2	2	3	2	3	1							2	2		
CO3	2	3	3	2	2							2	2		
CO4	2	3	3	3	1							2	2		

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

21UBT602C

L: T: P – 3-0-0

Total Hours/Week: 03

UNIT-I

10 Hrs.

Fermentation process

Range of fermentation processes, chronological development of fermentation industry, component of the fermentation process. Basic functions of a fermenter for microbial, plant and animal cell culture. Body parts of fermentor, aseptic operation and containment. Sterilization of fermentors. Classification of Fermentation Systems: Batch, fed batch and continuous process and their applications, Types of Fermentors.

Scale Up: Process engineering concepts, engineering considerations, mechanical considerations, energy considerations. Process GMP considerations of scale up, operations and quality.

UNIT-II

Raw materials and media

Media requirement for typical fermentation process, selection of typical raw materials, types of fermentation media. Preparation and handling of fermentation media, sterilization and its practical limits, Batch sterilization, Continuous sterilization and Filter sterilization. Different methods for optimization (Plackett-Burman Design, RSM) of industrial media, microbio

UNIT-III

10 Hrs.

10Hrs.

Microbial system

Isolation of industrially important microorganisms, Strain development methods, Preservation of industrially important microorganisms. Development of inoculum from laboratory scale to pilot scale and large scale fermentation (for bacterial, yeast, mycelial processes). Criteria for the transfer of inoculum. Aseptic transfer of inoculum to the fermentor. Trouble shooting during fermentation process (microbial contamination).

Secondary metabolite production: secondary metabolite production in bacteria, yeast and fungi. Production of lactic acid, butanol, antibiotics and enzymes.

UNIT–IV

10 Hrs.

Plant Cell system

Isolation and culture of single cells, Bioprocess using plant cell cultures. Bioreactors for suspension cultures, immobilized cells and organized tissues. Secondary metabolite enhancement techniques (alkaloids, steroids, phenolics).

Animal Cell system :

Scale up in suspension (stirred and static), monolayer (roller bottles, nunc cell factory microcarriers culture) and Perfusion culture (fixed and fluidized bed reactors).

Factors affecting cell culture,

Growth monitoring.

Genetically engineered cells for bioprocessing; process, selection of host vectors, process constraints-genetic instability, mass transfer and others.

Large scale production of insulin by mammalian cell culture.

Cellbank preparation & cell reviving techniques

Monoclonal antibody production: SUDBRCS (Single use disposable bioreactor configuration, types of production (perfusion culture, submerged culture, suspended adhered culture).

REFERENCE BOOKS

- 1. Principles of fermentation Technology by P.F. Stanbury and A. Whitaker, Aditya books (P) Ltd. New Delhi 1997.
- 2. Bioprocess Engineering by Michael L. Shuler, 2nd Edition Shuler & Kargi, Fikret Kargi, Academic Internet Publishers, 2006
- 3. Introduction to plant Biotechnology by H.S. Chawla, Second edition, Oxford & IBH Publisher
- 4. Plant tissue Culture : Theory and Practice by S.S. Bhojwani and M.K. Razdan (1996). Elsevier
- 5. Culture of animal cells by Ian Freshney IVth Edition. John Willey & Sons Publ.
- 6. Animal Biotechnology by Murray Moo-Young (1989), Pergamon Press, Oxford

COURSE OUTCOMES

- 1. Understand and identify the component parts of fermentor and fermentation system
- 2. Select the raw material , prepare and sterilize the media and also to optimize the industrial media using Design of experiments
- 3. Develop/design the industrially important microbes for industrial scale processes
- 4. Operate the reactors for Plant, Animal and GMOs

Course Outcomes					Prog	ramm	ie Out	come	S				Programme Specific Outcomes				
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3		
CO 1	3	1											1	3			
CO 2	-	3												3	3		
CO 3	2	2	3	1	1					2		1	3	3			
CO 4	2									3		1		3			

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

21U	BTE	503C	

L:T:P - **3-0-0**

BIOTRANSFORMATION AND ENZYME TECHNOLOGY

Total Hours/Week: 3

SEE Marks: 50

UNIT-I	10 Hrs.
Enzyme action:	
Mechanism of enzyme action. Derivations of Km value (Michaelis-Menton constant), Lin	neweaver-
Burk plot., Enzyme inhibition and kinetics	
Multi-Substrate Reactions:	
Introduction to enzyme catalyzed reaction Ping-pong mechanism, Sequential mechanism	n (ordered
and random), Enzyme models - Host guest complexation chemistry	
UNIT–II	10 Hrs.
Enzymatic Techniques:	
Strategies of purification of enzymes: choice of source, methods of homogenization,	Criteria of
purity: tests for purity, tests for catalytic activity, active site titrations, Molecu	lar weight
determination and characterization of enzymes.	
Immobilization of enzymes:	
Techniques of enzyme immobilization; design and configuration of immobilize	-
	conversion
processes(uses). The design and construction of novel enzymes	
UNIT–III	10 Hrs.
Enzymes of biological importance:	
Enzyme pattern in diseases like in Myocardial infarctions (SGOT, SGPT,	•
Acetylcholinesterase, angiotensin converting enzyme (ACE), 5'- nucleotidase (5NT),	glucose-6-
phosphate dehydrogenase (GPD). Use of isozymes as markers in cancer.	
	40.11
UNIT–IV	10 Hrs.
Industrial uses of enzymes:	
Industrial uses of enzymes: Enzymes used in detergents, use of proteases, leather and wool industries; methods i	involved in
Industrial uses of enzymes: Enzymes used in detergents, use of proteases, leather and wool industries; methods i production of glucose syrup from starch (using starch hydrolyzing enzymes).Uses of	involved in lactase in
Industrial uses of enzymes: Enzymes used in detergents, use of proteases, leather and wool industries; methods i	involved in lactase in
Industrial uses of enzymes: Enzymes used in detergents, use of proteases, leather and wool industries; methods in production of glucose syrup from starch (using starch hydrolyzing enzymes). Uses of dairy industry, glucose oxidase and catalase in food industry. Uses of proteases in food in	involved in lactase in
Industrial uses of enzymes: Enzymes used in detergents, use of proteases, leather and wool industries; methods i production of glucose syrup from starch (using starch hydrolyzing enzymes).Uses of dairy industry, glucose oxidase and catalase in food industry. Uses of proteases in food in	involved in lactase in
Industrial uses of enzymes: Enzymes used in detergents, use of proteases, leather and wool industries; methods in production of glucose syrup from starch (using starch hydrolyzing enzymes). Uses of dairy industry, glucose oxidase and catalase in food industry. Uses of proteases in food in	involved in lactase in dustries.
Industrial uses of enzymes: Enzymes used in detergents, use of proteases, leather and wool industries; methods i production of glucose syrup from starch (using starch hydrolyzing enzymes).Uses of dairy industry, glucose oxidase and catalase in food industry. Uses of proteases in food in Reference Books *	involved in lactase in dustries.
Industrial uses of enzymes: Enzymes used in detergents, use of proteases, leather and wool industries; methods i production of glucose syrup from starch (using starch hydrolyzing enzymes).Uses of dairy industry, glucose oxidase and catalase in food industry. Uses of proteases in food in Reference Books * 1. Trevor Palmer (2008). Enzymes: Biochemistry , Biotechnology, Clinical Chemistry.	involved ir lactase ir dustries. Horwood
Industrial uses of enzymes: Enzymes used in detergents, use of proteases, leather and wool industries; methods i production of glucose syrup from starch (using starch hydrolyzing enzymes).Uses of dairy industry, glucose oxidase and catalase in food industry. Uses of proteases in food in Reference Books * 1. Trevor Palmer (2008). Enzymes: Biochemistry , Biotechnology, Clinical Chemistry. Publishing Ltd, East-West Press,5 th Edition.	involved ir lactase ir dustries. Horwood th Edition.
 Industrial uses of enzymes: Enzymes used in detergents, use of proteases, leather and wool industries; methods is production of glucose syrup from starch (using starch hydrolyzing enzymes). Uses of dairy industry, glucose oxidase and catalase in food industry. Uses of proteases in food in Reference Books * 1. Trevor Palmer (2008). Enzymes: Biochemistry , Biotechnology, Clinical Chemistry. Publishing Ltd, East-West Press, 5th Edition. 2. David L. Nelson and Michael Cox (2017). "Lehninger Principles of Biochemistry" –7t 	involved in lactase in dustries. Horwood th Edition.
 Industrial uses of enzymes: Enzymes used in detergents, use of proteases, leather and wool industries; methods is production of glucose syrup from starch (using starch hydrolyzing enzymes). Uses of dairy industry, glucose oxidase and catalase in food industry. Uses of proteases in food in anticode in the starch (using starch hydrolyzing enzymes). Uses of proteases in food industry industry, glucose oxidase and catalase in food industry. Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Uses of a catalase in food industry. Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Uses of a catalase in food industry. Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Uses of a catalase in food industry. Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Uses of a catalase in food industry. Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Uses of a catalase in food industry. Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Uses of a catalase in food industry. Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Uses of proteases in food in the starch (using starch hydrolyzing enzymes). Use of proteases is thydrolyzing enzymes and the	involved ir lactase ir dustries. Horwood th Edition. university
 Industrial uses of enzymes: Enzymes used in detergents, use of proteases, leather and wool industries; methods i production of glucose syrup from starch (using starch hydrolyzing enzymes). Uses of dairy industry, glucose oxidase and catalase in food industry. Uses of proteases in food in Reference Books * 1. Trevor Palmer (2008). Enzymes: Biochemistry , Biotechnology, Clinical Chemistry. Publishing Ltd, East-West Press, 5th Edition. 2. David L. Nelson and Michael Cox (2017). "Lehninger Principles of Biochemistry" –7t 3. Nicholas C. Price and Lewis Stevens (2009). Fundamentals of Enzymology, Oxford Press, 3rd edition. 	involved ir lactase ir dustries. Horwood th Edition. university
 Industrial uses of enzymes: Enzymes used in detergents, use of proteases, leather and wool industries; methods is production of glucose syrup from starch (using starch hydrolyzing enzymes). Uses of dairy industry, glucose oxidase and catalase in food industry. Uses of proteases in food in Reference Books * Trevor Palmer (2008). Enzymes: Biochemistry , Biotechnology, Clinical Chemistry. Publishing Ltd, East-West Press,5th Edition. David L. Nelson and Michael Cox (2017). "Lehninger Principles of Biochemistry" –7t Nicholas C. Price and Lewis Stevens (2009). Fundamentals of Enzymology, Oxford Press, 3rd edition. James R Hanson (2017). "An Introduction to Biotransformation in Organic Cher edition , Oxford university Press, Daniel L. Purich, Melvin I. Simon, John N. Abelson (2009). Contemporary Enzym 	involved ir lactase ir dustries. Horwood th Edition. university mistry" 5 th
 Industrial uses of enzymes: Enzymes used in detergents, use of proteases, leather and wool industries; methods is production of glucose syrup from starch (using starch hydrolyzing enzymes). Uses of dairy industry, glucose oxidase and catalase in food industry. Uses of proteases in food in Reference Books * Trevor Palmer (2008). Enzymes: Biochemistry , Biotechnology, Clinical Chemistry. Publishing Ltd, East-West Press, 5th Edition. David L. Nelson and Michael Cox (2017). "Lehninger Principles of Biochemistry" –7t Nicholas C. Price and Lewis Stevens (2009). Fundamentals of Enzymology, Oxford Press, 3rd edition. James R Hanson (2017). "An Introduction to Biotransformation in Organic Cher edition , Oxford university Press, Daniel L. Purich, Melvin I. Simon, John N. Abelson (2009). Contemporary Enzym and Mechanism" Academic press, 3rd edition. 	involved ir lactase ir dustries. Horwood th Edition. university mistry" 5 th
 Industrial uses of enzymes: Enzymes used in detergents, use of proteases, leather and wool industries; methods is production of glucose syrup from starch (using starch hydrolyzing enzymes). Uses of dairy industry, glucose oxidase and catalase in food industry. Uses of proteases in food in Reference Books * Trevor Palmer (2008). Enzymes: Biochemistry , Biotechnology, Clinical Chemistry. Publishing Ltd, East-West Press, 5th Edition. David L. Nelson and Michael Cox (2017). "Lehninger Principles of Biochemistry" –7t Nicholas C. Price and Lewis Stevens (2009). Fundamentals of Enzymology, Oxford Press, 3rd edition. James R Hanson (2017). "An Introduction to Biotransformation in Organic Cher edition , Oxford university Press, Daniel L. Purich, Melvin I. Simon, John N. Abelson (2009). Contemporary Enzym 	involved ir lactase ir dustries. Horwood th Edition. university mistry" 5 th le Kinetics

7. Bailey and Ollis (2017). "Biochemical Engineering Fundamentals", Mcgraw Hill 2nd Ed.

Course Outcomes**

After completion of the course student will have the ability

1. To understand mechanism of enzyme and its reactions.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

- 2. To know enzymatic techniques to characterize the enzymes and apply the techniques of immobilization of enzymes.
- 3. To understand the importance of enzymes in diagnostics.
- 4. To apply knowledge of using enzymes in detergent, wool, leather and food industries.

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes	Programme Outcomes (POs)									-	Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	3	1	-	2		-	-	-	-	1	3	2	-
CO2	3	3	2	2	-	3	2	-	-	-	-	-	3	1	-
CO3	3	2	-	2	-	2	-	-	-	-	-	-	3	3	-
CO4	2	3	1	1	-	2	4	-	-	-	-	-	3	1	-

21UBT621E	BIOFUELS TECHNOLOGY	Credits: 3
L: T: P – 3-0-0		CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

Biochemistry of biofuels and energy resources

Basic principle of light energy conversion to chemical energy &carbon fixation. Biochemistry involved in conversion of sugars to alcohols. Renewable and non-renewable resources.

UNIT-I

Biofuels

Introduction to Biofuels - definition, advantages and disadvantages. Biofuel life cycle. Biomass as an energy core and its different mode of utilization. Conventional fuels and their environmental impacts. Modern fuels and their environmental impacts. Biofuel energy content. World scenario of biofuel production and use.

		UNIT–II
Biofuel	feed stocks	

Starch feed stocks-cereal grains, tubers & roots; Sugars feed stocks-sugarcane & sugarbeet; cellulosic feed stocks - forest residues, agricultural residues, Agricultural processing by-products, dedicated energy crops, municipal solid waste and paper waste. Lipid feed stocks :-Oilseed crops with examples, Algae, Waste oil, Animal fats. Next generation feed stocks. Environmental impacts of feed stocks.

Types of biofuels

First generation biofuels-vegetable oil biodisel, bioalcohols, bioethers, biogas syngas, solid biofuels. Second generation biofuels and third generation biofuels.

UNIT–III

UNIT-IV

Technologies for biofuels

Historical background. Biochemical platform – bioethanol production, standardization, emissions and properties of bioethanol. Thermochemical platforms - biodiesel production, standardization, properties and emissions of biodiesel. BtL fuels -production, properties and emissions. Biohydrogen processing and uses. Converting solid wastes to pipeline gas. Biomethanation, Microbial fuel cells. Blending of biofuels

Biofuels in perspective

Integrated refining concepts with reference to ethanol production. Economic feasibility of producing biodisel, Issues with biofuel production & use. Impact of biofuel in global climate change & food production. 1st versus 2nd generation biofuels.. Strategies for new vehicle technologies. Current research on biofuel production. Market barriers of biofuels.

10 Hrs.

10 Hrs.

12Hrs.

10 Hrs.

REFERENCE BO	DOKS*
	1. Foster C. F., John ware D.A.Environmental Biotechnology by, Ellis Horwood Limited, 1987.
	2. Larry Anderson and David A Fuels from Waste by Tillman. Academic Press, 1977.
	3. Biotechnology, Economic & Social Aspects: E.J. Dasilva, C Ratledge & A Sasson, Cambridge Univ. Press, Cambridge, 2000
	4. Environmental Biotechnology by Pradipta Kumar Mahopatra, 2007.
COURSE OUT	COMES** ompletion of the course student will be able to
	•
1.	Ability to understand the basic principle involved in bioconversion process in energy and to differentiate the conventional fuels with biofuels .
2.	Able to diagnose the types of feed stocks used for biofuels.
3.	Able to produce the biofuels (biodiesel, bioalcohol biogas and biohydrogen) using current technologies and innovations involved
4.	Able to understand and recall current issues related with production and use of biofuels, Research opportunities, economic feasibility of the biofuels

Course		Programme Outcomes											Programme Specific Outcomes			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO 1	3	2	-	-	2		1	-	-	-	-	1	3	2	-	
CO 2	3	3	-	3			2	-	-	-	-	1	2	-	-	
CO 3	3	3	-	3	3		2	-	-	-	-	3	-	2	-	
CO 4	3	3	-	3			2	-	-	-	-	3	-	1	-	

21UBT622E		Credits: 03
L:T:P – 3:0:0	FOOD BIOTECHNOLOGY	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	10 Hours						
Introduction							
Hunger, Technology and World food needs-nutritional problems, approaches to combat world l roles of technology. Recent Developments in food biotechnology, introduction to molecular fo biotechnology.	-						
Novel bioprocessing							
Biosensors for food quality assessment, cold active enzymes in food processing, biotransformat industries.	ion in food						
Nutrigenomics Definition of Nutriomics, Nutrigenetics, and its applications, Nutritional genomics and applicatio	ons in brief.						
Nutrigenetics and cancer.							
UNIT–II	10 Hrs.						
Metabolic engineering of bacteria for food ingredients (Amino acids, organic acids, vitamins). Introduction to technologies for microbial production of food ingredients. Solid-state fermentation for food applications (enzymes, pigments). Biotechnology of microbial polysaccharides- natural occurrence of microbial polysaccharides in foods, additives (xanthan) and its future, Microbial biotechnology of food flavor, oils and fats. Food applications of algae-nutritional value, source of neutraceuticals and industrial production processes (chlorella, spirulina, Agar, alginate). Genetics of Dairy starter cultures.							
UNIT-III	10 Hrs.						
Plant food applications Genomic basics for food improvement, molecular design of soybean proteins for enhanced food Genetic modifications of plant starches, plant oils, for food applications. Bioprocessing of starch enzyme technology. Molecular biotechnology for neutraceutical enrichment of food crops, Bioto of nonnutritive sweeteners, metabolic redesign of vitamin -E biosynthesis, production of new m Engineering of provitamin- A ,biosynthetic pathway into rice(Golden rice), Engineering of caroto biosynthesis for antioxidants, approaches to improve nutritional quality and shelf life of fruits vegetables.	n using echnology netabolites, enoid						
UNIT-IV	10 Hrs.						
Enhancement of leaf quality protein for ruminant animals. Methods of chloroplast transformati for transformati for transformation, engineering chloroplast for the production of edible vaccine, Transplastomi case study.							
Animal food applications: Genetic modification of production traits in farm animals, Foods mad animals, applications of transgenic fish technology in sea food production, enzymatic synthesis oligosaccharides-progress and recent trends.	of						
Food safety : international aspects of the quality and safety, genetically modified food controve Regulation of the release of genetic modified organisms,patenting inventions in food biotechno							

REFERENCE BOOKS *

- 1. Kalidas s, Gopinadhan P, Anthony P and Robert E.Levin- "Food Biotechnology"- second edition, CRC press, 2006
- 2. Gustavo F.G and Gustavo V.B,-" Food Science and Food Biotechnology"- CRC press, 2003
- 3. Mahesh S.-" Plant Molecular Biotechnology"- first edition, New age international publishers, ,
 - 2008

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

4. Norman N.Potter and Joseph H. Hotchkiss- Food Science- fifth edition- CBS publishers and distributors, 2007

COURSE OUTCOMES**

- 1. Students will be able to know the importance and current status of food biotechnology
- 2. Students will acquire the knowledge on novel food bioprocessing, nutrigenomics in brief.
- 3. Explore the applications of microbes in food biotechnology, new sources of food from microbes etc
- 4. Will be able to learn about plant food biotechnology and transplastomic technology
- 5. Will get the knowledge on applications of Animal food biotechnology and food safety and its regulation
- 6. Able to have an overview recent trends in GMOs and food biotechnology

Course Outcomes		Programme Outcomes (POs)									Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	2	-	2	1	-	-	-	-	-	1	2	1	1
CO2	2	-	2	-	3	2	-	-	-	-	-	1	2	1	1
CO3	1	1	1	-	2	2	-	-	-	-	-	1	2	1	2
CO4	2	-	2	-	2	1	-	-	-	-	-	1	2	1	1
CO5	2	1	1	-	3	1	-	-	-	-	-	1	2	1	2
CO6	1	-	1	-	2	2	-	-	-	-	-	2	2	1	1

21UBT623E	Biopython	Credits: 03
L:T:P - 3 : 0: 0		CIEMarks:50
Total Hours/Week: 03		SEEMarks:50

UNIT-I Introduction and brief history of Biopython, Biopython modules, Tools and GNU/Linux, Nucleic Acid Bioinformatics, Sequences, Strings, and the Genetic Code, Sequences File Formats, Introduction to Biological Sequence Database, Sequence Motifs, Introduction to Motifs, String Matching, Consensus Sequences, Motif Finding, Promoters, De novo Motif Finding.

UNIT-II 12 Hrs. Sequence Alignments, Alignment Algorithms and Dynamic Programming, Alignment Software, Alignment Statistics, Short Read Mapping Multiple Sequence Alignments, Molecular Evolution, and

Phylogenetics, Multiple Sequence Alignment, Phylogenetic Trees, Models of mutations,

Practices

Lab 4: Using BLAST on the command line, Lab 5: Phylogenetics

UNIT-III

Genomics, The Three Fundamental "Gotchas" of Genomics, Genomic Data and File Formats, Genome Browsers, Transcriptomics, High-throughout Sequencing (HTS), RNA Deep Sequencing, Small RNA sequencing, Single-Cell Transcriptomics, Transcription Initiation, sequencing, Long RNA Transcription, Elongation, RNA Seq, Noncoding RNAs, Small Noncoding RNAs (srcRNAs), Long Noncoding RNAs, RNA Structure Prediction, Destabilizing energies.

Practices: Lab 6: Genome Annotation Data, Lab 7: RNA-seq, Lab 8: RNA Structure,

Lab 9: Proteins.

UNIT-IV Protein Alignment, Functional Annotation of Proteins, Secondary Structure prediction, Gene Ontology, Gene Regulation, Transcription Factors and ChIP-seq, MicroRNA regulation and Small RNA-seq, Regulatory Networks.

Practices: Lab 8: RNA Structure, Lab 9: Proteins, Lab 10: ChIP-seq

Reference Books *

Reference Books:

- 1) Prof. David A. Hendrix
- 2) Deep Learning with Python, Francois Chollet

Reference Books/Protocols: Tutorials Point (Simply easy learning).

Course Outcomes**

16 Hrs.

12 Hrs.

12 Hrs.

After completion of the course student will be able to 1,Obtain knowledge on the biopython-GNU/Linux, modules, tools, commands and Motifs.

> Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

2.Acquire the skills of Sequence Alignments using the Softwares, Statistics, Short Read Mapping, Multiple Sequence Alignments, Molecular Evolution,

3. Understand and Analyze the Phylogenetics, Phylogenetic Trees, and Models of mutations.

4. Utilize the biopython in analysis of the Genomic and transcriptomics data.

5. Conduct the Protein Alignment, Functional Annotation, Secondary Structure prediction, Gene Ontology, Gene Regulation.

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

L:T:P – 3-0-0 Total Hours/Week: 3

UNIT-I

10 Hrs.

Introduction

Genes and Proteins, Polymorphisms – types of polymorphism, commercializing the Genome -Revenue opportunities: a) genome sequences and database subscriptions, b) prediction of new genes and their function by databases. c) prediction of new genes and their function by databases, d) potential revenue in the area diagnostic and biomedical applications, e) biosimilars market and implications.

UNIT-II

UNIT 3

Sequencing & genome projects: Early sequencing efforts. Methods of preparing genomic DNA for sequencing, DNA sequence analysis methods, Sanger Dideoxy method, Fluorescence method, shotgun approach. Next generation sequencing Genome projects on *E.coli.*, Arabidopsis and rice; Human genome project.

Functional Genomics

Gene variation and Single Nucleotide Polymorphisms (SNPs) genotyping tools -DNA Chips, comparative genomics. Functional genomic studies with model systems such as Drosophila, Yeast or C. elegans. Applications in Functional genomics, medicine and Gene Knockdown. Metagenomicsdefinition & concept. C-Value and paradox of genomes, Repetitive and coding sequences, Genetic and physical maps, chromosome walking Methods of molecular mapping, Marker assisted selection, map based cloning, Bioinformatics analysis- clustering methods. Approaches to physical mapping

10 Hrs.

10 Hrs.

Structure of Proteins

Conformational analysis and forces that determine protein structures, geometries, phi, psi, omega angles, Ramachandran diagram, allowed chi angles of side chains in proteins, hydrogen bonding, disulphide bonds, Vanderwaal's force, salt bridges hydrophobic interactions, alpha helices, beta sheets, helix to coil transition, general features and thermodynamic aspects of protein folding, folding kinetics, protein-ligand interactions (Examples of bio-molecular interactions), fibrous proteins (structure of collagen, keratin) and Quaternary structures.

UNIT-IV

10 Hrs.

Proteomics

Introduction to proteomics, Sample preparation, protein extraction Denovo protein synthesis, LCMS/MS, M/Z ratio, sequencing and identification, Predictive Methods using Protein sequences: Protein Identity based on composition, Related web based software (JPRED, PROSEC, NNPREDICT and SOPMA) Proteome analysis "Protein Chip" - interactions and detection techniques, two dimensional PAGE for proteome analysis, Applications of proteome analysis to drug development and toxicology. Crisper-cas. Challenges in proteomics.

REFERENCE BOOKS *

- Genetic Analysis Principles, Scope and Objectives by JRS Finchman, Blackwell Science, 1st Edition,1994.
- 2. A M Campbell & L J Heyer Discovering Genomics, Proteomics & Bioinformatics –, Pearson Education, 2nd Edition, 2006.
- 3. Albala J S & I Humprey-Smith Protein Arrays, Biochips and Proteomics, CRC Press, 1st Edition, 2003.
- 4. Sabesan, Genomics & Proteomics Ane Books, 2007. 5. Pennington S. R. and M J Dunn Proteomics.

COURSE OUTCOMES**

After completion of the course student will be able to

- 1. To know about genes, brief history, polymorphism, prediction methods, Biosimilars, business opportunities in diagnostic and medicine
- 2. Understand about the Human genome project, tools in DNA sequencing methods and other advanced techniques, Comparative genomics using model organisms, functional genomics of different organisms and molecular markers, gene and physical mapping techniques
- 3. To know about Protein structure analysis and molecular interactions
- 4. Analysis of proteins, quantification, sequencing, identification, protein predictive methods and proteomics in medicine

Course Outcomes					Prog	ramr	ne O	utco	mes				-	amme Sp Outcome	
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3	3	2	-	-	2	2	-				1	-	2	3
CO 2	3	3	1	-	-	2		-				2	1	-	3
CO 3	3	2	2	1	2	-		-				1	1	2	2
CO 4	2	2	2	2	2	2	2	2				1	1	2	2

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

21UBT625E		03 - 0	Credits (3 : 0 : 0)
Hours / Week : 03	BIOREACTOR DESIGN	C	IE Marks : 50
Total Hours : 40		SE	EE Marks : 50
	UNIT-I		10 Hrs.

BASICS OF BIOREACTORS

Overview of bioreactions, Elements in bioreactor design, Rate expression in biological systems, Basic concept of material and energy balances, Development and significance of bioreactors, Bioreactor configurations, Classification of bioreactors, Bioreactors for solid-state fermentation, plant and animal cell cultures

UNIT–II	10 Hrs.
---------	---------

BIOREACTOR OPERATION

Common operations of bioreactor, Identification of common factors for smooth operation of bioreactors, Spectrum of basic bioreactor operations, Bioreactor operation for immobilized systems, plant and animal cell cultures

UNIT–III

10 Hrs.

BATCH, SEMICONTINUOUS AND CONTINUOUS BIOREACTORS DESIGN

Overview of bioreactor design, Batch and semi continuous bioreactors for submerged fermentation of microbes, Continuous flow stirred tank and plug flow tubular bioreactors for submerged fermentation of microbes, Recycle bioreactors, Multistage bioreactors, Bioreactors for enzyme reactions and immobilized systems

UNIT-IV

10 Hrs.

CASE STUDIES AND SCALE-UP

Design of packed bed, fluidized bed, airlift, hollow fibre, plant cell, mammalian cell bioreactors for various applications, Scale=up – Criteria, Similarity criteria, Methods, Generalized approaches.

Reference Books *

- 1. Levenspiel, O., Chemical Reaction Engineering, Wiley Eastern Ltd.
- 2. Atkinson, B., Biological Reactors, pion Ltd., London, 1974.
- 3. Coulson, Richardson, Sinnott, An introduction to chemical engineering design, Pergamon
- 4. Alba S., Humphrey E and Milli N.R., "Bio Chemical Engineering" Academic Press, 1973.
- 5. Scragg. A.H "Bioreactors in Biotechnology"- A Practical approach
- 6. Tapobrata Panda. "Bioreactors: Analysis and Design", Latest Edition, New Delhi: Tata McGraw Hill Education Private Limited. 2011
- 7. Moser, Anton. "Bioprocess Technology: Kinetics and Reactors", Latest Edition, New York: Springer Verlag. 1988
- 8. Lydersen, D' Elia, Nelson, Bioprocess engineering: Systems and equipment.
- 9. Rawlings, J. B. and Ekerdt, J. G. "Chemical Reactor Analysis and Design Fundamentals", Latest Edition, San Francisco: Nob Hill Publisher. 2002

Course Outcomes**

After completion of the course student will be able to

- 1. State and Describe basic concepts of bioreactors
- 2. Apply the knowledge and Execute bioreactor operations for various applications
- 3. Design bioreactors for various biochemical applications

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

4. Apply the knowledge of scale up process to design bioreactors from Research to Industrial level

Course Outcomes				Pro	ograr	nme	Outc	ome	5					amme Sp Outcomes	
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	2	2	2	2	1							1	2		
CO 2	3	2	3	3	2							2	2		
CO 3	2	3	2	2	1							1	2		
CO 4	3	2	1	1	1							1	2		

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

UNIT-I	10 Hours
Introduction:	
Current Environmental Issues and scope of Environmental science and technology bio	geochemica
role of soil microorganisms, Bioconcrete, Environment Impact Assessment	
Bioaccumulation of toxicants	
Characteristics of Xenobiotics, Relationship of Bioaccumulation with Chemical	Structure
Ecophysiology of Bioaccumulation Process of toxicants uptake, Factors affecting bioa	ccumulation
measurement of bioaccumulation	
Sustainable future: Green building concept, Carbon foot print, crediting, trading and its	calculation
Water foot print Rain water harvesting .	
UNIT–II	10 Hrs.
Waste water treatment:	
Waste water characteristics BOD, COD, Primary & Secondary treatment, nanofiltration. u	ultrafiltration
and microfiltration Microbial removal of phosphorous and Nitrogen Wastewater t	reatment o
industries like sugar factories, food industries, beverages industries, and distilleries.	
Solid waste management	
Basic aspects, general composition of municipal solid wastes, aerobic treatment, anaerobic	2
treatment biogas generation Solid waste management. Hazardous wastes, Biomedica	al Wastes
waste management, MoEF rules.	
UNIT–III	10 Hrs.
Bioleaching & Biomining:	
Microbes in Bioleaching- types, methods of bioleaching, Microbial recovery of phosphate,	petroleum.
Bioremediation:	
Major contaminants of air, water and soil, Biomonitors of environment (Bi	ioindicators)
Bioremediation using microbes, Phytoremediation, Biofilms its applications Bio-sti	mulation o
Naturally occurring microbial activities, Bio-augmentation	
UNIT–IV	10Hrs.
Biofuels:	•
biolueis:	
Definition, Renewable and nonrenewable resources Advantages and disadvantages of biof	uels
Definition, Renewable and nonrenewable resources Advantages and disadvantages of biof	neration
Definition, Renewable and nonrenewable resources Advantages and disadvantages of biof Biofuel feed stocks-sugar starch, cellulose, lipid Types of biofuel- first, second and third ge	neration

REFERENCE BOOKS *

- 1. Pradipta Kum Mahopatra, 2006, Text Book of Environmental Biotechnology, I K Publishers.
- 2. R C Dubey and D K Maheshwari,2013 Text book of Microbiology,
- 3. M Y Young ,2004 ,Comprehensive Biotechnology Vol 1-4 (Eds). Pergamon Press

4. EJ Dasilva, C Ratledge & A Sasson, 2003, Biotechnology, Economic & Social Aspects Cambridge Univ Press.

5. Indu Shekhar Thakur,2012,Environmental Biotechnology Basic concepts and applications, Second Edition, I K international Publishing House, Pvt, Ltd.

- 1. Able to analyse the current environmental issues, scope of environmental Technology and understand the various sustainable future concepts.
- 2. Able to analyse the methods used in treatment of waste water and solid waste.
- 3. Able to understand the concept of bioleaching process and biomining activity
- 4. Able to analyse the types and methods used in cleaning of the environment by bioremediation.
- 5. Able to define the sources of biofuels and produce various biofuels
- 6. Able to analyse the need of conservation of biodiversity

Course Outcomes				Pro	grar	nme	Out	com	es (P	Os)				gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2				2	1								1	1
CO2	2	3	1		1								2	2	2
CO3	3	2			1								2	3	2
CO4	2	2	1				1						2	3	1
CO5	2	1					3					2	2	2	2
CO6	2		1		2		1					2	2	3	2

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

21UBT633N		Credits: 03
L:T:P – 3:0:0	INDUSTRIAL SAFETY	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50
	UNIT-I	12 Hrs.
Industrial safety		
Need for safety, importance o	of occupational health and safety, Health and safet	y programs, unsafe
conditions, factors contributin	ng to unsafe conditions, Good Lab Practices (GLP).	
Accidents:		
Accident preventive measure,	, Measurement and control of safety performance	e, 5E's for accident
prevention- Engineering, Educ	cation, Enthusiasm, Enforcement and Evaluation. H	lierarchy of Controls,
Safety policy.		
Chemical Hazards:		
Types of hazards, Classification	n of chemicals based on their nature, routes to exp	posure of chemicals, Healt
effects of harmful chemicals ir	n the work environment, Control of chemical hazar	rds.
	UNIT–II	10 Hrs.
Electrical Hazards and Contro	l measures	
· •	against voltage fluctuations, effects of shock on hu agents. Evacuation procedures for workers during (•
Physical Hazards and Control r	moasuros	
	illeasules.	
	ion, properties of sound, Workers exposure to elec	ctromagnetic field, Ionizing
Noise, noise exposure regulati		
Noise, noise exposure regulati radiation and non-ionizing rad	ion, properties of sound, Workers exposure to elec	gerous materials with
Noise, noise exposure regulati radiation and non-ionizing rad	ion, properties of sound, Workers exposure to elec liations, effects of radiations, Classification of dang	gerous materials with
Noise, noise exposure regulati radiation and non-ionizing rad pictorial symbols, Safety in tra	ion, properties of sound, Workers exposure to elect liations, effects of radiations, Classification of dang ansportation of dangerous materials by road, rail, s	gerous materials with ships and pipelines.
Noise, noise exposure regulati radiation and non-ionizing rad pictorial symbols, Safety in tra Biological and Construction H	ion, properties of sound, Workers exposure to elect liations, effects of radiations, Classification of dang ansportation of dangerous materials by road, rail, s UNIT–III	gerous materials with ships and pipelines. 10 Hrs.
Noise, noise exposure regulati radiation and non-ionizing rad pictorial symbols, Safety in tra Biological and Construction H Classification of Bio hazardous	ion, properties of sound, Workers exposure to elect diations, effects of radiations, Classification of dang ansportation of dangerous materials by road, rail, s UNIT–III lazards and their control measures	gerous materials with ships and pipelines. 10 Hrs. dial agents, viral agents,
Noise, noise exposure regulati radiation and non-ionizing rad pictorial symbols, Safety in tra Biological and Construction H Classification of Bio hazardous fungal, parasitic agents, infect	ion, properties of sound, Workers exposure to elect diations, effects of radiations, Classification of dang ansportation of dangerous materials by road, rail, s UNIT–III lazards and their control measures s agents –bacterial agents, rickettsial and chlamyo	gerous materials with ships and pipelines. 10 Hrs. dial agents, viral agents, nstructions followed for
Noise, noise exposure regulati radiation and non-ionizing rad pictorial symbols, Safety in tra Biological and Construction H Classification of Bio hazardous fungal, parasitic agents, infect hazardous waste disposal, Bio	ion, properties of sound, Workers exposure to elect diations, effects of radiations, Classification of dang ansportation of dangerous materials by road, rail, s UNIT–III lazards and their control measures s agents –bacterial agents, rickettsial and chlamyc tious diseases –Hazardous material used in labs, Ir	gerous materials with ships and pipelines. 10 Hrs. dial agents, viral agents, nstructions followed for
Noise, noise exposure regulati radiation and non-ionizing rad pictorial symbols, Safety in tra Biological and Construction H Classification of Bio hazardous fungal, parasitic agents, infect hazardous waste disposal, Biol Construction Hazards:	ion, properties of sound, Workers exposure to elect diations, effects of radiations, Classification of dang ansportation of dangerous materials by road, rail, s UNIT–III lazards and their control measures s agents –bacterial agents, rickettsial and chlamyc tious diseases –Hazardous material used in labs, Ir	gerous materials with ships and pipelines. 10 Hrs. dial agents, viral agents, nstructions followed for s.
Noise, noise exposure regulati radiation and non-ionizing rad pictorial symbols, Safety in tra Biological and Construction H Classification of Bio hazardous fungal, parasitic agents, infect hazardous waste disposal, Biol Construction Hazards:	ion, properties of sound, Workers exposure to elect diations, effects of radiations, Classification of dang ansportation of dangerous materials by road, rail, s UNIT–III lazards and their control measures s agents –bacterial agents, rickettsial and chlamyo tious diseases –Hazardous material used in labs, Ir hazard control program, Biological safety cabinets	gerous materials with ships and pipelines. 10 Hrs. dial agents, viral agents, nstructions followed for s.
Noise, noise exposure regulati radiation and non-ionizing rad pictorial symbols, Safety in tra Biological and Construction H Classification of Bio hazardous fungal, parasitic agents, infect hazardous waste disposal, Biol Construction Hazards: Hazards in construction and sa	ion, properties of sound, Workers exposure to elect diations, effects of radiations, Classification of dang ansportation of dangerous materials by road, rail, s UNIT–III lazards and their control measures s agents –bacterial agents, rickettsial and chlamyo tious diseases –Hazardous material used in labs, Ir hazard control program, Biological safety cabinets afety measures, Good Manufacturing Practices (GN UNIT–IV	gerous materials with ships and pipelines. 10 Hrs. dial agents, viral agents, nstructions followed for s. VIP).
Noise, noise exposure regulati radiation and non-ionizing rad pictorial symbols, Safety in tra Biological and Construction H Classification of Bio hazardous fungal, parasitic agents, infect hazardous waste disposal, Biol Construction Hazards: Hazards in construction and sa Occupational Health and Toxi	ion, properties of sound, Workers exposure to elect diations, effects of radiations, Classification of dang ansportation of dangerous materials by road, rail, s UNIT–III lazards and their control measures s agents –bacterial agents, rickettsial and chlamyo tious diseases –Hazardous material used in labs, Ir hazard control program, Biological safety cabinets afety measures, Good Manufacturing Practices (GN UNIT–IV	gerous materials with ships and pipelines. 10 Hrs. dial agents, viral agents, nstructions followed for s. MP). 10 Hrs.
Noise, noise exposure regulati radiation and non-ionizing rad pictorial symbols, Safety in tra Biological and Construction H Classification of Bio hazardous fungal, parasitic agents, infect hazardous waste disposal, Biol Construction Hazards: Hazards in construction and sa Occupational Health and Toxi Classification of Occupational	ion, properties of sound, Workers exposure to elect diations, effects of radiations, Classification of dangerous materials by road, rail, s UNIT–III lazards and their control measures s agents –bacterial agents, rickettsial and chlamyo tious diseases –Hazardous material used in labs, Ir hazard control program, Biological safety cabinets afety measures, Good Manufacturing Practices (GN UNIT–IV icology	gerous materials with ships and pipelines. 10 Hrs. dial agents, viral agents, nstructions followed for s. MP). 10 Hrs. sbestosis, pneumoconiosis
Noise, noise exposure regulati radiation and non-ionizing rad pictorial symbols, Safety in tra Biological and Construction H Classification of Bio hazardous fungal, parasitic agents, infect hazardous waste disposal, Biol Construction Hazards: Hazards in construction and sa Occupational Health and Toxi Classification of Occupational etc. lead, nickel, chromium an	ion, properties of sound, Workers exposure to elect diations, effects of radiations, Classification of dangerous materials by road, rail, s UNIT–III dazards and their control measures s agents –bacterial agents, rickettsial and chlamyo tious diseases –Hazardous material used in labs, Ir hazard control program, Biological safety cabinets afety measures, Good Manufacturing Practices (GN UNIT–IV icology hazards, occupational related diseases- silicosis, as	gerous materials with ships and pipelines. 10 Hrs. dial agents, viral agents, nstructions followed for s. VIP). 10 Hrs. sbestosis, pneumoconiosis
Noise, noise exposure regulati radiation and non-ionizing rad pictorial symbols, Safety in tra Biological and Construction H Classification of Bio hazardous fungal, parasitic agents, infect hazardous waste disposal, Biol Construction Hazards: Hazards in construction and sa Occupational Health and Toxi Classification of Occupational etc. lead, nickel, chromium an systemic and chronic effects, t	ion, properties of sound, Workers exposure to elect diations, effects of radiations, Classification of dangerous materials by road, rail, s UNIT–III lazards and their control measures s agents –bacterial agents, rickettsial and chlamyo tious diseases –Hazardous material used in labs, Ir hazard control program, Biological safety cabinets afety measures, Good Manufacturing Practices (GN UNIT–IV icology hazards, occupational related diseases- silicosis, as	gerous materials with ships and pipelines. 10 Hrs. dial agents, viral agents, nstructions followed for s. VIP). 10 Hrs. sbestosis, pneumoconiosis
Noise, noise exposure regulati radiation and non-ionizing rad pictorial symbols, Safety in tra Biological and Construction H Classification of Bio hazardous fungal, parasitic agents, infect hazardous waste disposal, Biol Construction Hazards: Hazards in construction and sa Occupational Health and Toxi Classification of Occupational etc. lead, nickel, chromium an systemic and chronic effects, t Company policies.	ion, properties of sound, Workers exposure to elect diations, effects of radiations, Classification of dangerous materials by road, rail, s UNIT–III lazards and their control measures s agents –bacterial agents, rickettsial and chlamyo tious diseases –Hazardous material used in labs, Ir hazard control program, Biological safety cabinets afety measures, Good Manufacturing Practices (GN UNIT–IV icology hazards, occupational related diseases- silicosis, as	gerous materials with ships and pipelines. 10 Hrs. dial agents, viral agents, nstructions followed for s. VIP). 10 Hrs. sbestosis, pneumoconiosis
Noise, noise exposure regulati radiation and non-ionizing rad pictorial symbols, Safety in tra Biological and Construction H Classification of Bio hazardous fungal, parasitic agents, infect hazardous waste disposal, Biol Construction Hazards: Hazards in construction and sa Occupational Health and Toxi Classification of Occupational etc. lead, nickel, chromium an systemic and chronic effects, t Company policies. REFERENCE BOOKS *	ion, properties of sound, Workers exposure to elect diations, effects of radiations, Classification of dangerous materials by road, rail, s UNIT–III lazards and their control measures s agents –bacterial agents, rickettsial and chlamyo tious diseases –Hazardous material used in labs, Ir hazard control program, Biological safety cabinets afety measures, Good Manufacturing Practices (GN UNIT–IV icology hazards, occupational related diseases- silicosis, as	gerous materials with ships and pipelines. 10 Hrs. dial agents, viral agents, nstructions followed for s. MP). 10 Hrs. sbestosis, pneumoconiosis astrial toxicology, local, ene. Various types of
Noise, noise exposure regulati radiation and non-ionizing rad pictorial symbols, Safety in tra Biological and Construction H Classification of Bio hazardous fungal, parasitic agents, infect hazardous waste disposal, Biol Construction Hazards: Hazards in construction and sa Occupational Health and Toxi Classification of Occupational etc. lead, nickel, chromium an systemic and chronic effects, t Company policies. REFERENCE BOOKS * 1. Mark Friend and James Scarecrow Press, Inc.	ion, properties of sound, Workers exposure to elect diations, effects of radiations, Classification of dangerous materials by road, rail, s UNIT–III dazards and their control measures s agents –bacterial agents, rickettsial and chlamyo tious diseases –Hazardous material used in labs, Ir hazard control program, Biological safety cabinets afety measures, Good Manufacturing Practices (GN UNIT–IV ficology hazards, occupational related diseases- silicosis, as ad manganese toxicity, effects and prevention Indu temporary and cumulative effects. Industrial Hygie	gerous materials with ships and pipelines. 10 Hrs. dial agents, viral agents, nstructions followed for s. VIP). 10 Hrs. sbestosis, pneumoconiosis istrial toxicology, local, ene. Various types of ety and Health The

After completion of the course student will be able to

- 1. Apply the basic knowledge of Industrial hazards and safety.
- 2. Interpret & analyze the various types of accidents and chemical hazards.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

- 3. Identify physical hazards and apply control measures in work place.
- 4. Acquire knowledge of electrical hazards and apply control measures in work place.
- 5. Identify various types of biological hazards and apply control measures.
- 6. Identify control measures and apply the knowledge in industrial toxicology and hygiene, occupational diseases in work place.

Course Outcomes				Pro	ograr	nme	Out	com	es (P	Os)				gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	1	1	1	1	1	1	-	-	-	-	-	3	2	1
CO2	-	1	1	3	1	1	1	-	-	-	-	-	3	2	1
CO3	-	1	3	3	3	2	1	-	-	-	-	-	3	2	1
CO4	-	1	3	2	3	2	1	-	-	-	-	-	3	2	1
CO5	-	1	3	3	3	2	1	-	-	-	-	-	3	2	3
CO6	-	1	3	3	3	3	1	-	-	-	-	-	3	2	3

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

June

21UBT604L	BIOKINETICS & ENZYME TECHNOLOGY	Credits: 01	
L: T: P - 0: 0:2	– LAB	CIE Marks: 50	
Total Hours/Week: 2		SEE Marks: 50	
	LIST OF EXPERIMENTS		
	e from sweet potato or saliva		
2. Maltose calibration curve	•		
3. Determination of activity	, , ,		
4. Determination of Specific			
5. Effect of pH and temperat			
6. Determination of Kinetics	constants (Km & Vmax)		
7. Urea calibration curve			
8. Determine the activity of	•		
9. Effect of inhibitors on enz			
-	e and determination of immobilized enzyme		
11. Prediction of % error, sta	andard deviation need to be calculated from	expt. no 5 and 6)	
			12 Hr
EFERENCE BOOKS*			
1. Pattabiraman 2017. Labor India,.	ratory manual of Biochemistry, 4 th Edition, In	ternational Book Publi	shers,
2. Sadasivam and Manickam Publishers.	, 2017, Biochemical methods, 2 nd Edition, Ne	ew age International	
OURSE OUTCOMES**			
fter completion of the course s	tudent will have the ability		
1. To to isolate enzymes an	d plot calibration curves for estimation the	e enzyme activity and	specific

- To to isolate enzymes and plot calibration curves for estimation the enzyme activity and specific activity.
- 2. To evaluate the optimum pH and temperature required for enzyme activity and analyze the effect of inhibitors for enzyme activity.
- 3. To apply knowledge of Km & Vmax for enzyme activity.
- 4. To immobilize enzymes and find the activity of enzymes.

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

			uun	WILLII B	nope	acu	ion w	uu t	inu si	iouiu	or abor	saur	and quan	unabic	
Course Outcomes					Pro	gram	me O	utcon	nes					amme Spe Outcomes	cific
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	1	2	3	2			3	3				3	2	3	1
CO 2	2	3	3	2			2	3				3	2	3	1
CO 3	2	3	3	3		3	2	2				2	2	1	2
CO 4	3	3	3	2		2	2	2				2	3	1	1

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE DEPARTMENT OF BIOTECHNOLOGY

Scheme and Syllabus

B. E. VII SEMESTER

Sl.	C. A			C I ''		lour Veel		Exan	ninatio	on Marks
N o	Categor y	Subject Code	Subject Title	Credit s	L	T	K P	CI E	SE E	TOTA L
1.	PCC	UBT704C	Economics and Plant Design	3	3	0	0	50	50	100
2.	PCC	UBT715C	Downstream Processing Technology	3	2	2	0	50	50	100
3.	PEC	UBT7XXE	Elective-4	3	3	0	0	50	50	100
4.	PEC	UBT7XXE	Elective-5	3	3	0	0	50	50	100
5.	HSMS	UBT716H	Industrial Management and Entrepreneurshi P	3	3	0	0	50	50	100
6.	OEC	UBT733N	Industrial Safety (Open Elective)	3	3	0	0	50	50	100
7.	INT	UBT711I	Industrial Internship	2	0	0	4	50	50	100
8.	PCCL	UBT710L	Bioseparation Techniques Lab	1	0	0	2	50	50	100
	ativo 1 8- I	Total	•	21	1 8	0	0 6	400	400	800

Elective-4 & Elective-5

UBT722E: Biopython

UBT723E: Industrial BT

UBT724E: Food Processing Technology

UBT725E: Protein Engineering and Drug Design

UBT731E: Nanobiotechnology & Biomaterials

UBT732E: Computational Biology

UBT733E: Bioconjugative Technology

UBT734E: Food Biotechnology

		Credits: 3:
L: T: P – 3-0-0	ECONOMICS & PLANT DESIGN	CIE Marks: 50
Total Hours/Week:03		SEE Marks: 50
	UNIT-I	10 Hrs.
Process design developme	nt	
Design project procedure, o	design information from the literature and oth	er sources of information,
flow diagrams, preliminary	design and equipment design and specialization	on, safety factors
specifications, and materia		· •
General design considerati		
-	ct, availability of technology, raw materials, hu	man resources, land and
	, plant location, plant layout, plant operation a	
		, ,
Sturage, materials namuling	g, materials and fabrication selection,. Waste di	isposal community
	g, materials and fabrication selection,. Waste di control measures.	isposal community
	-	isposal community 12Hrs.
factors. Safety and hazard of Capital investments	control measures.	
factors. Safety and hazard o Capital investments	control measures.	12Hrs.
factors. Safety and hazard o Capital investments Fixed capital investments in	control measures. UNIT–II	12Hrs. s, installation
factors. Safety and hazard o Capital investments Fixed capital investments in costs,(including equipment	control measures. UNIT–II ncluding land, building, equipment and utilities t, instrumentation, piping, electrical installatior	12Hrs. s, installation
factors. Safety and hazard o Capital investments Fixed capital investments in costs,(including equipment utilities),working capital inv	control measures. UNIT–II ncluding land, building, equipment and utilities t, instrumentation, piping, electrical installation vestments.	12Hrs. s, installation
factors. Safety and hazard of Capital investments Fixed capital investments in costs,(including equipment utilities),working capital inv	control measures. UNIT–II ncluding land, building, equipment and utilities t, instrumentation, piping, electrical installation vestments.	12Hrs. s, installation n and other
factors. Safety and hazard of Capital investments Fixed capital investments in costs,(including equipment utilities),working capital inv Manufacturing costs and p Manufacturing Costs: Direct	control measures. UNIT–II ncluding land, building, equipment and utilities t, instrumentation, piping, electrical installation vestments. Ilant overheads: ct Production costs (including raw materials, hu	12Hrs. s, installation n and other uman resources,
factors. Safety and hazard of Capital investments Fixed capital investments in costs,(including equipment utilities),working capital inv Manufacturing costs and p Manufacturing Costs: Direc maintenance and repair, op	control measures. UNIT–II ncluding land, building, equipment and utilities t, instrumentation, piping, electrical installation vestments. Jant overheads:	12Hrs. s, installation n and other uman resources, yalties, etc.), fixed charges

Cradita, 2.

10 Hrs.

Cost analysis

Cost Analysis: Factors involved in project cost estimation, methods employed for the estimation of the capital investment. Estimation of working capital

Depreciation: different type of depreciation methods of and calculations, Conceptual numerical.

Profitability analysis

Methods for the evaluation of profitability. Return on original investment, interest rate of return, Cash flow diagrams. Break-even analysis. Conceptual numericals.

REFERENCE BOOKS*

• Peters and Timmerhaus (1989) Plant Design and Economics for Chemical Engineers, 4th edn.McGraw Hill.

UNIT-IV

- Rudd and Watson (1987) Strategy of Process Engineering, Wiley.
- Poornima M C (2006) Entrepreneurship Development and Small Business Enterprises", Pearson education.
- Vasanth Desai (2007) Dynamics of Entrepreneurial Development & Management", H imalaya Publishing House.
- Khanka SS (2004) Entrepreneurship Development, S Chand & Co. Thomas W. Zimmer, Norman M. Scarborough.(2007), Essentials of Entrepreneurship and small Business Management

At the end of the course the student should be able to:

- 1. Acquire knowledge in the design of a plant.
- 2. Conduct preliminary feasibility study of the plant design assigned.
- 3. Estimate the cost analysis involved in the design of a chemical plant.
- 4. Analyze the project profitability and alternative investments for the selection of good investment projects
- 5. Develop entrepreneurs with substantial knowledge in engineering concepts.
- 6. Apply the knowledge of plant design and cost estimation in actual engineering problems.

Course		Programme Outcomes								Programme Specific					
Outcomes													(Dutcome	S
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	2	2	1	1			1	1	1		2		2		
CO 2	2	1	2	1			1	1	1		3		2		
CO 3	1	2	1	2			1	1	1		2		1		
CO 4	2	1	2	2			1	1	1		3		2		
CO 5	1	1	2	1			1	1	1		2		1		
CO 6	2	2	2	1			1	1	1		2		2		

		SEE Marks: 50
	UNIT-I	10 Hrs.
characteristics of bioprodu ntracellular products; phys distillation,crystallization, c	wnstream processing in biotechnological processes cts. Purification process of bio-product. Cell disrup sical, chemical and mechanical methods. Basic prin centrifugation, ultracentrifugation (preparative and crifugation-differential, density gradient (zonal and i	otion methods for ciples of analytical).Types of sopycnic).
	UNIT–II	12Hrs.
dialysis, electrodialysis, ultr	of proteins and nucleic acids by solvents and polye rafiltration (Removal of insolubles by filtration), rev ane based separations theory, design and configura	erse osmosis, drying
	UNIT–III	10 Hrs.
	hic seperations, Classification of chromatography-	plain and column
and two dimensional) chro chromatography, Gas liquid chromatography, Ion Excha chromatography. Gel Filtra	romatography - Single dimensional (Ascending and matography, partition coefficient, retention factor, d Chromatography, Adsorption Chromatography: A ange Chromatography: cation Exchange and anion E tion Chromatography, Affinity Chromatography, Hig -HPLC and RP-HPLC.	Thin layer dsorption column Exchange
and two dimensional) chro chromatography, Gas liquid chromatography, Ion Excha	matography, partition coefficient, retention factor, d Chromatography, Adsorption Chromatography: A ange Chromatography: cation Exchange and anion E tion Chromatography, Affinity Chromatography, Hig	Thin layer dsorption column Exchange

CIE Marks: 50

Credits: 3

DOWNSTREAM PROCESSING TECHNOLOGY

UBT715C

L: T: P – 2-2-0

REFERENCE BOOKS*

- 1. BioseparationsPrinciples and techniques, by B.Sivasankar, Kindle edition,PHI Publishers, 2010
- 2. Biophysical chemistry principles and Techniques by Upadhay and Nath, Himalaya Publishing House, 3rd edition, 2010
- 3. NPTEL Source material.
- 4. Bioseparations Downstream processing for biotechnology by Belter P.A., Cussier E. and Wei Shan Hu., Wiley Interscience Pub, 1988
- 5. Separation Processes in Biotechnology by Asenjo J. and Dekker M, 1993.
- 6. Product Recovery in Bioprocess Technology BIOTOL Series, VCH, 1990
- 7. Rate controlled separations by Wankat P.c., Elsevier, 1990
- 8. Fermentation & Enzyme Technology by D.I.C. Wang, Wiley Eastern 1979

- 1. Identify the basic separation unit operation in DSP like membrane separation, enrichment operation, product recovery and various resolutions and fractionation techniques.
- 2. Interpret and analyze the industrial fermentation processes.
- 3. Apply the knowledge in identifying various pharma and R&D sections.
- 4. Analyse the details of experimentation pertaining to chromatography and electrophoresis.
- 5. Understand analyse and apply the techniques in various tests involved in finding out purity of biological components.
- 6. Apply the knowledge in identifying various biochemicals using advanced purifications like HPLC and to demonstrate DSP flowsheets.

Course Outcomes		Programme Outcomes								Programme Specific Outcomes					
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1			2			3	2	2				1	2	1	1
CO 2			2			3	2	3				1	2	1	1
CO 3			1			3	2	2				1	2	1	1
CO 4			2			3	2	2				1	2	1	1
CO 5			1			3	3	3				1	2	1	1
CO 6			1			3	2	2				2	2	1	1

UBT716H	INDUSTRIAL MANAGEMENT AND	Credits: 03	
L:T:P – 3:0:0	ENTREPRENEURSHIP	CIE Marks: 50	
Total Hours/Week: 03		SEE Marks: 50	

UNIT-I	12 Hrs.							
Development of management thoughts and its functions								
Concept & definition of Management, Social Responsibilities of Management, and Pioneers								
in Management: Contributions of Taylor, Henry Taylor, Gilberth& Mayo, Schools of								
Management thought: Management process school, Empirical School, Human Beha								
School, Social system school, Systems approach school and decision theory school.								
of site for the plant and plant layout, plant operation and control, utilities, structur								
storage, material handling, Sources of capital. Definition and functions of administ Planning, organizing, staffing, directing and controlling. Concept of authority and	ration.							
responsibility.								
UNIT–II	10 Hrs.							
Quantitative techniques in managerial decisions								
Concept of productivity, measuring productivity, concept of budget, effective budg	getary							
control, ABC analysis, break even analysis, product life cycle, promotion of sales, pr	ricing,							
"EOQ" model. Production costs (including raw materials, and repair, operating sup	plies,							
power and other utilities, royalties, etc.), fixed charges (including depreciation, taxe	es,							
insurance, rental costs etc.).								
UNIT-III	10 Hrs.							
Production And Material Management								
Types of production, types of planning, manufacturing planning, factory planning,								
production planning, method study, systems of wage payments, bonus, automation,								
organization of production, planning. Functions of purchasing & materials manage								
quality, quality standard & inspection, sources of supply, pricing, principles & pract	lices,							
Inventory management. UNIT–IV	10 Hrs.							
Entrepreneurship& personnel management	101113.							
Meaning of entrepreneur, evaluation of the concept, function of entrepreneur, e	volution of							
entrepreneurship, development of entrepreneurship, stages in entrepreneurial pr								
of entrepreneurs in economic development entrepreneurship- its barriers. Recru								
selection. Training of personnel. Employer - Employee relationship. Settlement of c	disputes.							
Reference Books *								
1. O.P. Khanna - "Industrial Engineering & Management", Dhanpat R	Rai &							
Sons, 1992.	an x							
 T. R. Banga & S. C. Sharma - "Industrial Engineering & Management Science" 	6 th							
Edn, Khanna Publications, 2003.	,0.							
3. C.B.Mamoria and S.V.Gankar- Personnel Management, Himalaya Pub, 21 st e	dn 2010							
4. Veerabhadra Havinal - Management and Entrepreneurship- New Age Internal								
2009								
5. Ramesh Burbure – Management & Entrepreneurship- Rohan Pub. 2008								
6. Poornima M. Charanthimath – Entrepreneurship Development, Pearson Educ	cation-							
2005								
COURSE OUTCOMES**								
After completion of the course student will be able to								
1. Recall and recollect the history theories and definition of management and i	its							
importance in society								

June

- 2. Analyze and apply the basic concepts of Quantitative techniques of management
- 3. Know the difference between production and productivity, measurement and cost analysis
- 4. Explore the knowledge of production costs, planning and material management
- 5. Make basic economic analysis of project
- 6. Understand the role and importance of entrepreneurship in economic development

Course		Programme Outcomes (POs)												Program Specific Outcomes (PSOs)		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	-	-	-	-	-	-	1	-	-	-	3	1	-	-	2	
CO2	-	1	-	-	-	-	-	-	-	-	3	1	-	-	2	
CO3	-	1	-	-	-	-	-	-	-	-	3	1	-	-	2	
CO4	-	1	-	-	-	-	-	-	-	-	3	1	-	-	2	
CO5	-	1	-	-	-	-	-	-	-	-	3	1	-	-	2	
CO6	-	1	-	-	-	-	-	-	2	-	3	1	-	-	2	

UBT710L
L: T: P – 0-0-2
Total Hours/Week: 2

BIOSEPARATION TECHNIQUES LAB

Credits: 1 CIE Marks: 50

SEE Marks: 50

LIST OF EXPERIMENTS

- 1. Cell disruption techniques.
- 2. Solid-liquid separation methods: Filtration (Cross flow)
- 3. Solid-liquid separation methods: Sedimentation.
- 4. Solid-liquid separation methods: Centrifugation.
- 5. Membrane dialysis
- 6. Product enrichment operations: Precipitation (NH4)2 SO4 fractionation of a protein.
- 7. Product enrichment operations: Two phase aqueous extraction.
- 8. Product drying techniques.
- 9. Estimation of Amino acids / Carbohydrates by TLC.
- 10. Separation of ethanol from fermented broth.
- 11. Separation of Citric acid from fermented broth.
- 12. Separation of proteins by molecular sieving.
- 13. Analysis of biomolecules by HPLC / GC (using standard spectra).

REFERENCE BOOKS**

- 1. Protein Purification by Scopes R.K., IRL Press, 1993.
- 2. Rate controlled separations by Wankat P.C., Elsevier, 1990
- 3. Bioseparations by Belter P.A. and Cussier E., Wiley, 1985.
- 4. Bio-separations Science & Engineering By Roger G Harrison, Paul Todd, Scott R Rudge, Demetri.
- 5. Product Recovery in Bioprocess Technology BIOTOL Series, VCH, 1990
- 6. Separation processes in Biotechnology by Asenjo J. and Dekker M. 1993

- 1. Able to prepare/reproduce the protocols for the experiments.
- 2. Able to extract the intracellular product using different cell disruption techniques.
- 3. Able to concentrate, purify the desired product using different chromatography/ filtration techniques.
- 4. Able to analyze the product both quantitative/qualitatively.
- 5. Able to record/observe the experimental data and interpret them in the graph/table.
- 6. Able to calculate the result and to write the conclusion at the end of the experiment.

													1			
Course	Course Programme Outcomes							Programme Specific								
Outcomes													Outcomes			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3	
CO 1	3												3		1	
CO 2		2												3	1	
CO 3			3										2	2	1	
CO 4				3	3								2	2	1	
CO 5		3										2	2	3	1	
CO 6		3										2	3	2	1	

UBT722E		Credits: 03
L:T:P - 3 : 0: 0	Biopython	CIEMarks:50
Total Hours/Week: 03		SEEMarks:50

UNIT-I								
Introduction and brief history of Biopython, Biopython modules, Tools and GNU/Linux, I	Nucleic Acid							
Bioinformatics, Sequences, Strings, and the Genetic Code, Sequences File Formats, Int	roduction to							
Biological Sequence Database, Sequence Motifs, Introduction to Motifs, String Matching	Biological Sequence Database, Sequence Motifs, Introduction to Motifs, String Matching, Consensus							
Sequences, Motif Finding, Promoters, De novo Motif Finding.								

Just

UNIT–II

12 Hrs.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Sequence Alignments, Alignment Algorithms and Dynamic Programming, Alignment Software, Alignment Statistics, Short Read Mapping Multiple Sequence Alignments, Molecular Evolution, and Phylogenetics, Multiple Sequence Alignment, Phylogenetic Trees, Models of mutations,

Practices

Lab 4: Using BLAST on the command line, Lab 5: Phylogenetics

12 Hrs.

Genomics, The Three Fundamental "Gotchas" of Genomics, Genomic Data and File Formats, Genome Browsers, Transcriptomics, High-throughout Sequencing (HTS), RNA Deep Sequencing, Small RNA sequencing, Long RNA sequencing, Single-Cell Transcriptomics, Transcription Initiation, Transcription, Elongation, RNA Seq, Noncoding RNAs, Small Noncoding RNAs (srcRNAs), Long Noncoding RNAs, RNA Structure Prediction, Destabilizing energies.

Practices: Lab 6: Genome Annotation Data, Lab 7: RNA-seq, Lab 8: RNA Structure,

Lab 9: Proteins.

UNIT-IV

UNIT-III

12 Hrs.

Protein Alignment, Functional Annotation of Proteins, Secondary Structure prediction, Gene Ontology, Gene Regulation, Transcription Factors and ChIP-seq, MicroRNA regulation and Small RNA-seq, Regulatory Networks.

Practices: Lab 8: RNA Structure, Lab 9: Proteins, Lab 10: ChIP-seq

Reference Books *

Reference Books:

- 1) Prof. David A. Hendrix
- 2) Deep Learning with Python, Francois Chollet

Reference Books/Protocols: Tutorials Point (Simply easy learning).

Course Outcomes**

After completion of the course student will be able to

1,Obtain knowledge on the biopython-GNU/Linux, modules, tools, commands and Motifs.

2. Acquire the skills of Sequence Alignments using the Softwares, Statistics, Short Read Mapping, Multiple Sequence Alignments, Molecular Evolution,

3. Understand and Analyze the Phylogenetics, Phylogenetic Trees, and Models of mutations.

4. Utilize the biopython in analysis of the Genomic and transcriptomics data.

5. Conduct the Protein Alignment, Functional Annotation, Secondary Structure prediction, Gene Ontology, Gene Regulation.

UBT724E		Credits: 3	
L: T: P – 3-0-0	FOOD PROCESSING TECHNOLOGY	CIE Marks: 50	
Total Hours/Week: 03		SEE Marks: 50	

Introduction

Constituents of food, soluble fibres, protein rich foods, popular fats and oils in foods, Food flavours, Browning reactions and its effects . Intrinsic and extrinsic parameters of foods, effect of inhibitors, pH and temperature. Minerals in foods. Aroma compounds in foods .Food additives, Vitamins, amino acids, Sweeteners, Food colours. Toxic-trace elements in food.

UNIT-I

10 Hrs.

UNIT–II	12Hrs.						
Detection of Microorganisms							
Detection of Microorganisms Culture, Microscopic and Sampling Methods, Conventional; SPC, Membrane Filters, Microscope olony Counts, Agar Droplets, Dry Films, Most probable Numbers (MPN), Dyereduction, Roll Tubes, Direct, Microscopic Count (DMC), Microbiological Examination of surfaces, Air Sampling, Metabolically Injured Organisms, Enumeration and Detection of Food-borne Organisms. Dairy products: Composition of milk, Sterilization of milk (Pasteurization and UHT), Cheese production, Acidophilus milk Yoghurt, Kumiss and Kefir. Marketing scope of dairy & food products Fruit and							
vegetable processing: Jam, jelly, Juice, squash, wine, pickles and sauerkraut	egetable processing: Jam, jelly, Juice, squash, wine, pickles and sauerkraut						
UNIT–III	10 Hrs.						
Synopsis of common borne bacteria, Molds& Yeasts. Microbial Spoilage of Vegetables, Frui and Processed Meats, Poultry, and Seafood. Spoilage of Miscellaneous Foods, Food Preserv Principles Underlying in spoilage and preservation, Application, Effect and Legal Status of F Irradiation, Food Preservation with Low Temperatures, High Temperatures and Drying. Foo Industry: Characteristics of Food Industry.:, nutritional food supplements. Food packaging,	Food Spoilage & Preservation The Role and Significance of Microorganisms, Primary Sources of Microorganisms found in Foods Synopsis of common borne bacteria, Molds& Yeasts. Microbial Spoilage of Vegetables, Fruits, Fresh and Processed Meats, Poultry, and Seafood. Spoilage of Miscellaneous Foods, Food Preservation: Principles Underlying in spoilage and preservation, Application, Effect and Legal Status of Food rradiation, Food Preservation with Low Temperatures, High Temperatures and Drying. Food ndustry: Characteristics of Food Industry.:, nutritional food supplements. Food packaging, New crends in packing, edible films. Factors influencing food product development, marketing, and						
UNIT–IV	10 Hrs.						
Food Engineering Properties of fluid foods, Measurement of rheological parameters .Thermal properties of							

Properties of fluid foods, Measurement of rheological parameters .Thermal properties of frozen foods. Food freezing equipment, storage of frozen foods. Food dehydration: Freeze Dehydration Calculation of drying times. Food waste management.

- 1. Food Science & Nutrition, by Sunetra Roady, Oxford University Press, 2007.
- Food microbiology by William Frazier and Westhoff D.C, 4thEdn,TATA McGraw Hill Pub(2005)
- 3. Modern Food Micro-Biology by James M.Jay, CBS Publishers.2005.
- 4. Food Microbiology by K.Vijay RameshMJP Publishers, 2007.
- 5. Plant biotechnology In Agriculture by K. Lindsey and M.G.K. Jones, Prentice Hall, USA. 1990.
- 6. Food Science By Potter N.N. and Joseph Hotchkiss, 5thEdn, CBSPub, 1996.

- 1. Able to know about basic constituents of food
- 2. Able to know the techniques involved in detection of microbes in food industry
- 3. To have idea about Dairy , fruits and vegetable processed products and production
- 4. To be aware of different food spoilage and preservation techniques
- 5. To know the Characteristics of food industry and scope
- 6. Able to understand Basic concepts in food Engineering for preservation

Course	Programme Outcomes	Programme Specific
Outcomes	5	Outcomes

	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1			2			3	2	2				1	2	1	
CO 2			2			3	2	3				1	2	1	
CO 3			1			3	2	2				1	2	1	
CO 4			2			3	2	2				1	2	1	
CO 5			1			3	3	3				1	2	1	
CO 6			1			3	2	2				2	2	1	

UBT725E	PROTEIN ENGINEERING AND DRUG	Credits: 03
L:T:P – 3:0:0	DESIGN	CIE Marks: 50
Total Hours/Week: 03	DESIGN	SEE Marks: 50

Structure of proteins

Overview of protein structure, PDB, structure based classification, databases, visualization tools, structure alignment, domain architecture databases, protein-ligand interactions.

UNIT-I

Protein structure prediction

Primary structure and its determination, secondary structure prediction and determination of motifs, profiles, patterns, fingerprints, super secondary structures, protein folding pathways, tertiary structure, quaternary structure, methods to determine tertiary and quaternary structure, post translational modification.

Protein engineering and design

Methods of protein isolation, purification and quantitation; large scale synthesis of proteins, design and synthesis of peptides, use of peptides in biology, methods of detection and analysis of proteins. Protein database analysis, methods to alter primary structure of proteins, examples of engineered proteins, protein design, principles and examples.

10 Hours

UNIT–II	10 Hrs.
Molecular modeling	
Constructing an Initial Model, Refining the Model, Manipulating the Model, Visuali Structure Generation or Retrieval, Structure Visualization, Conformation Generatio Deriving Bioactive Conformations, Molecule Superposition and Alignment, Deriving Pharmacophoric Pattern, Receptor Mapping, Estimating Biological Activities, Molec	n, g the
Interactions: Docking, Calculation of Molecular Properties, Energy Calculations (no	Julian
derivation), Examples of Small Molecular Modeling Work, Nicotinic Ligands, Sigma	Ligands.
Antimalarial Agents.	
UNIT-III	10 Hrs.
Insilico drug design	
Generation of Rational Approaches in Drug Design, Molecular Modeling: The Secor Generation, Conceptual Frame and Methodology of Molecular Modeling, The Field Covered, Importance of the "Bioactive Conformation", Molecular Mimicry and Stru Similarities, Molecular Mimicry, Structural Similarities and Superimposition Technic Rational Drug Design and Chemical Intuition, An Important Key and the Role of the Molecular Model, Limitations of Chemical Intuition Major Milestones and Future Perspectives. Computer assisted new lead design	Currently ctural ques,
Introduction, Basic Concepts, Molecular Recognition by Receptor and Ligand Desig	n. Active
Conformation, Approaches to Discover New Functions, Approaches to the Cases w	
and unknown receptor structure.	
UNIT-IV	10 Hrs.
Docking methods	
Program GREEN Grid: Three -Dimensional Description of Binding Site Environment Energy Calculation, Automatic Docking Method, Three-Dimensional Database Search Approaches, Automated Structure Construction Methods, Structure Construction N with known Three-Dimensional Structure of the Receptor, Structure Construction in of Unknown Receptor Structure. Scope and Limitations, Points for Consideration in Structure, Construction Methods, Handling of X-Ray Structures of Proteins, Future Perspectives, Types of programs available for molecular modeling-scope and limita interpretation of results. Computer - assisted drug discovery The Drug Development Process, Introduction, The Discovery and Development Pro Lead Discovery Strategies, Composition of Drug Discovery Teams, The Practice of C Assisted Drug Discovery (CADD), Current Practice of CADD in the pharmaceutical In Management Structures of CADD Groups, Contributions and Achievements of CAD Limitations of CADD Support, Inherent Limitations of CADD Support, State of Curre Computational Models, Software and Hardware Constraints.	ch Methods n the case tions- cess, New omputer- dustry, D Groups,
REFERENCE BOOKS *	
 Bioinformatics Methods & Applications: Genomics, Proteomics & Drug Discor C Rastogi, Mendiratta & P Rastogi, PHI,4th Edition, 2013 Moody P.C.E. and A.J. Wilkinson Protein Engineering, IRL Press, Oxford Edition,2010. Creighton T.E. Proteins, Freeman W.H. Second Edn,1993. Branden C. and Tooze R. Introduction of protein structure, Garland,1993. 	•

hard

5. The molecular modeling perspective in drug design by N Claude Cohen, 2008, Academic Press.

COURSE OUTCOMES**

- 1. Ability to study protein structure prediction and protein engineering and design
- 2. Able to understand molecular modeling
- 3. Able to know computer assisted new lead design
- 4. Able to study docking methods and computer assisted drug discovery

Course Outcomes	Programme Outcomes (PO					Programme Outcomes (POs)								am Spe omes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	-	2	-	1	1	2	2	-	-	-	1	2	1	1
CO2	1	-	2	-	-	2	2	3	-	-	-	1	2	1	2
CO3	-	-	1	1	2	-	2	2	-	-	-	1	2	1	-
CO4	2	-	2	-	-	1	2	2	-	-	-	1	2	1	-

UBT731E	NANOBIOTECHNOLOGY AND	Credits: 03
L:T:P – 3:0:0	BIOMATERIALS	CIE Marks: 50
Total Hours/Week: 03	DIOWATENIALS	SEE Marks: 50

UNIT-I 10 Hrs. Introduction to nanotechnology: A Brief History of the Nano particles : Bottom-Up versus Top-Down; What Is Nanobiotechnology. Discussions on nanofabrication, nanolithography, nanotubes, buckyballs, structure-property relationships in materials, materials characterization techniques, scanning electron, scanning tunneling and atomic force microscopy(SEM,STM & AFM), biomolecule-surface interactions, quantum dots, Applications of nanotechnology in the life sciences: Buckyballs and Buckytubes, Diagnostics and Sensors, Drug Delivery Revenues Health Risks and Challenge. UNIT-II 10 Hrs. **Biopolymers:** Polymers as biomaterials, microstructure, mechanical properties – effects of environment on elastic moduli, sterilization and disinfections of polymeric materials. Biocompatibility of

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

polymers, chemically modified glycosaminoglycans, heparin like substances from nonglycosaminoglycan polysaccharides and microbial glycosaminoglycan, surface immobilized heparins.	
UNIT–III	10 Hrs.
Synthetic polymers:	
Polymers in biomedical use, polyethylene and polypropylene, perfluorinated polyn acrylic polymers, hydrogels, polyurethanes, polyamides, biodegradable synthetic p silicone rubber, plasma polymerization, micro-organisms in polymeric implants, po sterilization.	olymers,
UNIT–IV	10 Hrs.
Biocompatibility: Definition, Wound healing process-bone healing, tendon healing. Material respons Function and Degradation of materials in vivo. Host response: Tissue response to biomaterials . Testing of implants: Methods of test for biological performance-In v implant tests, In vivo implant test methods. Medical devices:	
	ma ft
Polyurethane elastomers, applications of polymers in medicine and surgery. Skin g	rait
polymers, Properties of implant materials, metals and alloys.	

June

REFERENCE BOOKS *

- 1. B.Vishwanath (2011). "Nano Materials" Published by Narosa Publishing House Pvt. Ltd., New Delh.
- 2. Mark Ratner and Daniel Ratner (2003). "Nanotechnology: A Gentle Introduction to Next Gig Idea" Pearson Ecducation Ltd.
- 3. K Eric Drexler (1993). "Unbounding the future" Quill.
- 4. Stephen Lee and Lynn M Savage (2010). "Biological molecules in Nanotechnology".

COURSE OUTCOMES**

After completion of the course student will have the

- 1. Ability to explain the characterization techniques of nanotechnology.
- 2. Ability to understand the importance of nano-particles in drug delivery system.
- 3. Ability to understand the importance of biopolymers.
- 4. Ability to differentiate biopolymer and synthetic polymer.
- 5. Ability to understand the importance of biocompatibility.
- 6. Ability to apply the methods to test the implants and use in medical devices.

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes			F	Prog	ram	me	Out	com	nes (POs)			-	ram Spo omes (F	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	3	-	-	1	2	-	-	-	-	-	2	2	1
CO2	1	2	3	-	-	1	-	-	I	I	-	-	3	-	-
CO3	2	2	3	-	-	2	-	-	1	I	-	-	2	2	1
CO4	3	3	3	-	-	2	-	-	-	-	-	-	2	1	1
CO5	3	З	3	-	-	1	-	-	1	I	-	1	2	-	-
CO6	2	3	3	-		3	3	-	-	-		-	3	1	-

UBT732E		03 - Credits (3 : 0 : 0)
Hours / Week : 03	COMPUTATIONAL BIOLOGY	CIE Marks : 50

Total Hours : 40	SEE Marks : 50

Nature and scope of Computational Biology: Basic algorithms in Computational Biology, Biological and Computer algorithm, Fibonacci problem, Dynamic Programming, Time and space complexity of algorithms, Laplace's Rule. Search Algorithms: Random walk, Hill climbing, simulated annealing. Combinatorial Pattern Matching: Hash Tables, Repeat Finding, Exact Pattern Matching; Genetic Algorithm: Basic Concepts, Reproduction, Cross over, Mutation, Fitness Value, Optimization using GAs; Applications of GA in bioinformatics. UNIT – 2 8 Hrs Combinatorial Pattern Matching; Hash Tables, Repeat Finding, Exact Pattern Matching; Genetic Algorithm: Basic Concepts, Reproduction, Cross over, Mutation, Fitness Value, Optimization using GAs; Applications of GA in bioinformatics. UNIT – 2 8 Hrs Combinatorial Pattern Matching: Hash Tables, Repeat Finding, Exact Pattern Matching; Genetic Algorithm: Basic Concepts, Reproduction, Cross over, Mutation, Fitness Value, Optimization using GAs; Applications of GA in bioinformatics. UNIT – 3 10 Hrs Hidden Markov Model: Markov processes and Markov Models, Hidden Markov Models. Forward and Backward Algorithms, Most probable state path: Viterbi algorithm, Parameter Estimation for HMMs:-Baum-Welch Algorithm, Applications of profile HMMs for multiple alignment of proteins and for finding genes in the DNA. UNIT – 4 10 Hrs Insilico Drug Design: Basic Concepts, importance and application, Molecular force fields and energy minimization, Molecul	UNIT – 1	12 Hrs
Combinatorial Pattern Matching: Hash Tables, Repeat Finding, Exact Pattern Matching; Genetic Algorithm: Basic Concepts, Reproduction, Cross over, Mutation, Fitness Value, Optimization using GAs; Applications of GA in bioinformatics. UNIT – 3 10 Hrs Hidden Markov Model: Markov processes and Markov Models, Hidden Markov Models. Forward and Backward Algorithms, Most probable state path: Viterbi algorithm, Parameter Estimation for HMMs:-Baum-Welch Algorithm, Applications of profile HMMs for multiple alignment of proteins and for finding genes in the DNA. UNIT – 4 10 Hrs Insilico Drug Design and Biopython applications in Computational Biology Insilico Drug Design: Basic Concepts, importance and application, Molecular force fields and energy minimization, Molecular Dynamics Simulation methods, Methods of Insilico Drug Design: structure and ligand based drug design approach, structure based drug design: Molecular docking. Biopython: Introduction, important features and application of biopython in computational biology, Create a simple sequence in Biopython for DNA, RNA and Protein Alphabets, Sequence Alignment Tools in Biopython, PDB Module of Biopython,	Biological and Computer algorithm, Fibonacci problem, Dynamic Programs space complexity of algorithms, Laplace's Rule. Search Algorithms: R climbing, simulated annealing. Combinatorial Pattern Matching: Hash Finding, Exact Pattern Matching; Genetic Algorithm: Basic Concepts, Re over, Mutation, Fitness Value, Optimization using GAs; Applicat	mming, Time and andom walk, Hill h Tables, Repeat production, Cross
Genetic Algorithm: Basic Concepts, Reproduction, Cross over, Mutation, Fitness Value, Optimization using GAs; Applications of GA in bioinformatics. UNIT – 3 10 Hrs Hidden Markov Model: Markov processes and Markov Models, Hidden Markov Models. Forward and Backward Algorithms, Most probable state path: Viterbi algorithm, Parameter Estimation for HMMs:-Baum-Welch Algorithm, Applications of profile HMMs for multiple alignment of proteins and for finding genes in the DNA. UNIT – 4 10 Hrs Insilico Drug Design and Biopython applications in Computational Biology Insilico Drug Design: Basic Concepts, importance and application, Molecular force fields and energy minimization, Molecular Dynamics Simulation methods, Methods of Insilico Drug Design: structure and ligand based drug design approach, structure based drug design: Molecular docking. Biopython: Introduction, important features and application of biopython in computational biology, Create a simple sequence in Biopython for DNA, RNA and Protein Alphabets, Sequence Alignment Tools in Biopython, PDB Module of Biopython,	UNIT – 2	8 Hrs
Hidden Markov Model: Markov processes and Markov Models, Hidden Markov Models. Forward and Backward Algorithms, Most probable state path: Viterbi algorithm, Parameter Estimation for HMMs:-Baum-Welch Algorithm, Applications of profile HMMs for multiple alignment of proteins and for finding genes in the DNA. UNIT – 4 10 Hrs Insilico Drug Design and Biopython applications in Computational Biology Insilico Drug Design: Basic Concepts, importance and application, Molecular force fields and energy minimization, Molecular Dynamics Simulation methods, Methods of Insilico Drug Design: structure and ligand based drug design approach, structure based drug design: Molecular docking. Biopython: Introduction, important features and application of biopython in computational biology, Create a simple sequence in Biopython for DNA, RNA and Protein Alphabets, Sequence Alignment Tools in Biopython, PDB Module of Biopython,		tness Value,
Forward and Backward Algorithms, Most probable state path: Viterbi algorithm, Parameter Estimation for HMMs:-Baum-Welch Algorithm, Applications of profile HMMs for multiple alignment of proteins and for finding genes in the DNA.UNIT-410 HrsInsilico Drug Design and Biopython applications in Computational Biology Insilico Drug Design: Basic Concepts, importance and application, Molecular force fields and energy minimization, Molecular Dynamics Simulation methods, Methods of Insilico Drug Design: structure and ligand based drug design approach, structure based drug design: Molecular docking. Biopython: Introduction, important features and application of biopython in computational biology, Create a simple sequence in Biopython for DNA, RNA and Protein Alphabets, Sequence Alignment Tools in Biopython, PDB Module of Biopython,	UNIT – 3	10 Hrs
Insilico Drug Design and Biopython applications in Computational Biology Insilico Drug Design: Basic Concepts, importance and application, Molecular force fields and energy minimization, Molecular Dynamics Simulation methods, Methods of Insilico Drug Design: structure and ligand based drug design approach, structure based drug design: Molecular docking. Biopython: Introduction, important features and application of biopython in computational biology, Create a simple sequence in Biopython for DNA, RNA and Protein Alphabets, Sequence Alignment Tools in Biopython, PDB Module of Biopython,	Hidden Markov Model: Markov processes and Markov Models, Hidden	Markov Madala
Insilico Drug Design: Basic Concepts, importance and application, Molecular force fields and energy minimization, Molecular Dynamics Simulation methods, Methods of Insilico Drug Design: structure and ligand based drug design approach, structure based drug design: Molecular docking. Biopython: Introduction, important features and application of biopython in computational biology, Create a simple sequence in Biopython for DNA, RNA and Protein Alphabets, Sequence Alignment Tools in Biopython, PDB Module of Biopython,	Parameter Estimation for HMMs:-Baum-Welch Algorithm, Applications	terbi algorithm,
	Parameter Estimation for HMMs:-Baum-Welch Algorithm, Applications for multiple alignment of proteins and for finding genes in the DNA.	terbi algorithm, of profile HMMs

•	Introduction to bioinformatics by Teresa K. Attwood, David J. Parry- Smith,1999,Pearson Education.
•	Arthur M.Lesk, Introduction to Bioinformatics, Oxford University Press, New Delhi, 2003.
•	Higgins and W.Taylor (Eds), Bioinformatics-Sequence, Structure and databanks, Oxford University Press, New Delhi, 2000
•	An introduction to bioinformatics algorithms by Neil C. Jones, Pavel Pevzner. MIT Press.2004 2.
•	Biological sequence analysis: Probabilistic models of proteins and nucleic acids by Richard Durbin, Eddy, Anders Krogh, 1998
	Algorithms for Molecular Biology by Ron Shamir Lecture, Fall Semester, 20014.
1.	Bioinformatics- a practical guide to the analysis of Genes and Proteins by Baxevanis, A.D. and Francis Ouellellette, B.F., 1998, John Wiley & Sons, UK.
2.	Introduction to bioinformatics by Teresa K. Attwood, David J. Parry-Smith, 1999,Pearson Education.
3.	Arthur M.Lesk, Introduction to Bioinformatics, Oxford University Press, New Delhi, 2003.
4.	D.Higgins and W.Taylor (Eds), Bioinformatics-Sequence, Structure and databanks, Oxford University Press, New Delhi, 2000.
5.	Bioinformatics: the machine learning approach by Pierre Baldi, Søren Brunak. MIT Press.2001 2.
6.	Bioinformatics: Sequence and Genome Analysis: by David Mount, University of Arizona,Tucson
COUR	SE OUTCOMES
	completion of the course student will be able to
	Understand the nature, scope of computational biology and biological and
-/	computer algorithms.
2)	Know about the Combinatorial Pattern Matching, Genetic algorithms and their
,	applications.
3)	Analyze various Markov processes and Markov Models.
-	Learn about the Insilico Drug Design and Bionython applications in Computational

4) Learn about the Insilico Drug Design and Biopython applications in Computational Biology

Course Outcomes				Р	rogra	amm	e Ou	tcom	ies				-	mme Sp utcome	
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3	3	3									2	2	1	
CO 2	2	3	3									2	2	1	
CO 3	3	3	3									1	2	1	
CO 4	3	3	3									1	2	1	

UBT733E

BIOCONJUGATIVE TECHNOLOGY

Credits: 03

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

L:T:P – 3:0:0	CIE Marks: 50
Total Hours:40	SEE Marks: 50
UNIT-I	10 Hours
Bioconjugative technology	10110010
Modification of Amino Acids, Peptides and Proteins – Modification of s	ugars,
polysaccharides and glycoconjugates – modification of nucleic acids an	d oligonucleotides.
UNIT–II	10 Hrs.
Chemistry of active groups Amine reactive chemical reactions – Thiol reactive chemical reactions – chemical reactions – hydroxyl reactive chemical reactions – aldehyde a chemical reactions – Photoreactive chemical reactions. Bioconjugate reagents Zero length cross linkers – Homobifunctional cross linkers – Heterobifu	nd ketone reactive nctional cross linkers
 Trifunctional cross linkers – Cleavable reagent systems – tags and pro 	bes.
UNIT–III Enzyme and nucleic acid modification and conjugation	10 Hrs.
Properties of common enzymes – Activated enzymes for conjugation – – chemical modification of nucleic acids – biotin labeling of DNA- enzyr DNA – Fluorescent of DNA. UNIT–IV	
Bioconjugate applications Preparation of Hapten-carrier Immunogen conjugates - antibody modif conjugation – immunotoxin conjugation techniques – liposome conjuga Colloidal – gold-labeled proteins – modification with synthetic polymer REFERENCE BOOKS *	ated and derivatives-
 Bioconjugate Techniques, G.T. Hermanson, Academic Press, 2 nd Bioconjugate techniques, Greg T Hermanson, academic Press, Gl A Text book of biophysics by Dr R.N. Roy, UBS publishers, 2001 Bioconjugative Chemistry by Vincent M Rotello, American Chemi Bioconjugate techniques, Greg T Hermanson, academic Press, Gl 	obal store , 2016 cal society, 2016
COURSE OUTCOMES**	
 Able to understand modification of nucleic acids and oligonucleo Ability to know the chemistry of active groups. To analyse the bioconjugate reactants. To analyze bioconjugate applications . Ability to know the conjugate derivatives. Ability tostudy the conjugation process. 	tides.

Course Outcomes			F	Prog	ram	me	Out	con	nes	(POs)			-	am Spe omes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3

June

CO1	1	-	2	-	1	1	2	1	-	-	-	1	2	1	1
CO2	1	•	2	•	-	2	2	-	-	-	-	1	2	1	2
CO3	-	-	1	1	2	-	2	-	-	-	-	1	2	1	-
CO4	2	-	2	-	-	1	2	1	-	-	-	1	2	1	-
CO5	-	-	1	2	2	-	3	1	-	-	-	1	2	1	1
CO6	1	•	1	•	-	2	2	2	-	-	-	2	2	1	-

UBT734E		Credits: 03
L:T:P – 3:0:0	FOOD BIOTECHNOLOGY	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

	UNIT-I		10 Hours	
		022 1110		
Total Hours/Week: 03		SEE Marks: 50		
L:T:P – 3:0:0	FOOD BIOTECHNOLOGY	CIE Mai	rks: 50	
UBT734E		Credit	ts: 03	

Introduction Hunger, Technology and World food needs-nutritional problems, approaches to co world hunger, roles of technology. Recent Developments in food biotechnology, introduction to molecular food biotechnology. Novel bioprocessing Biosensors for food quality assessment, cold active enzymes in food processing,	
world hunger, roles of technology. Recent Developments in food biotechnology, introduction to molecular food biotechnology. Novel bioprocessing Biosensors for food quality assessment, cold active enzymes in food processing,	mhat
introduction to molecular food biotechnology. Novel bioprocessing Biosensors for food quality assessment, cold active enzymes in food processing,	mpat
Novel bioprocessing Biosensors for food quality assessment, cold active enzymes in food processing,	
Biosensors for food quality assessment, cold active enzymes in food processing,	
biotransformation in food industries.	
Nutrigenomics	
Definition of Nutriomics, Nutrigenetics, and its applications, Nutritional genomics a	ind
applications in brief. Nutrigenetics and cancer.	40.11.2
UNIT-II	10 Hrs.
Microbial biotechnology of food	
Metabolic engineering of bacteria for food ingredients (Amino acids, organic acids,	
vitamins). Introduction to technologies for microbial production of food ingredient	
state fermentation for food applications (enzymes, pigments). Biotechnology of m	
polysaccharides- natural occurrence of microbial polysaccharides in foods, additive	
(xanthan) and its future, Microbial biotechnology of food flavor, oils and fats. Food	
applications of algae-nutritional value, source of neutraceuticals and industrial pro-	duction
processes (chlorella, spirulina, Agar, alginate). Genetics of Dairy starter cultures.	
UNIT-III	10 Hrs.
Plant food applications	
Genomic basics for food improvement, molecular design of soybean proteins for en	
food quality, Genetic modifications of plant starches, plant oils, for food application	ns.
Bioprocessing of starch using enzyme technology. Molecular biotechnology for	
neutraceutical enrichment of food crops, Biotechnology of nonnutritive sweetener	
metabolic redesign of vitamin -E biosynthesis, production of new metabolites, Engi	-
of provitamin- A ,biosynthetic pathway into rice(Golden rice), Engineering of carot	
biosynthesis for antioxidants, approaches to improve nutritional quality and shelf	life of
fruits and vegetables.	
UNIT-IV	10 Hrs.
Enhancement of leaf quality protein for ruminant animals. Methods of chloroplast	
transformation, markers for transformation, engineering chloroplast for the produc	ction of
edible vaccine, Transplastomic maize- a case study.	
Animal food applications: Genetic modification of production traits in farm animal	
	luction,
made from GM animals, applications of transgenic fish technology in sea food proc	
made from GM animals, applications of transgenic fish technology in sea food proc enzymatic synthesis of oligosaccharides-progress and recent trends.	
made from GM animals, applications of transgenic fish technology in sea food proc enzymatic synthesis of oligosaccharides-progress and recent trends. Food safety : international aspects of the quality and safety, genetically modified fo	
made from GM animals, applications of transgenic fish technology in sea food proc enzymatic synthesis of oligosaccharides-progress and recent trends. Food safety : international aspects of the quality and safety, genetically modified for controversies. Regulation of the release of genetic modified organisms,patenting in	
made from GM animals, applications of transgenic fish technology in sea food proc enzymatic synthesis of oligosaccharides-progress and recent trends. Food safety : international aspects of the quality and safety, genetically modified fo	
made from GM animals, applications of transgenic fish technology in sea food proc enzymatic synthesis of oligosaccharides-progress and recent trends. Food safety : international aspects of the quality and safety, genetically modified fo controversies. Regulation of the release of genetic modified organisms,patenting ir	
made from GM animals, applications of transgenic fish technology in sea food proc enzymatic synthesis of oligosaccharides-progress and recent trends. Food safety : international aspects of the quality and safety, genetically modified fo controversies. Regulation of the release of genetic modified organisms,patenting in in food biotechnology.	nventions
made from GM animals, applications of transgenic fish technology in sea food proc enzymatic synthesis of oligosaccharides-progress and recent trends. Food safety : international aspects of the quality and safety, genetically modified for controversies. Regulation of the release of genetic modified organisms, patenting in in food biotechnology. REFERENCE BOOKS *	nventions
 made from GM animals, applications of transgenic fish technology in sea food proceenzymatic synthesis of oligosaccharides-progress and recent trends. Food safety: international aspects of the quality and safety, genetically modified for controversies. Regulation of the release of genetic modified organisms, patenting in food biotechnology. REFERENCE BOOKS * Kalidas s, Gopinadhan P, Anthony P and Robert E.Levin- "Food Biotechnology 	ventions y"-
 made from GM animals, applications of transgenic fish technology in sea food procenzymatic synthesis of oligosaccharides-progress and recent trends. Food safety: international aspects of the quality and safety, genetically modified for controversies. Regulation of the release of genetic modified organisms, patenting in food biotechnology. REFERENCE BOOKS * Kalidas s, Gopinadhan P, Anthony P and Robert E.Levin- "Food Biotechnolog second edition, CRC press, 2006 	ventions y"-
 made from GM animals, applications of transgenic fish technology in sea food procenzymatic synthesis of oligosaccharides-progress and recent trends. Food safety: international aspects of the quality and safety, genetically modified for controversies. Regulation of the release of genetic modified organisms, patenting in food biotechnology. REFERENCE BOOKS * Kalidas s, Gopinadhan P, Anthony P and Robert E.Levin- "Food Biotechnolog second edition, CRC press, 2006 Gustavo F.G and Gustavo V.B,-" Food Science and Food Biotechnology"- CRC 	y"- press,

June

4. Norman N.Potter and Joseph H. Hotchkiss- Food Science- fifth edition- CBS publishers and distributors, 2007

COURSE OUTCOMES**

- 1. Students will be able to know the importance and current status of food biotechnology
- 2. Students will acquire the knowledge on novel food bioprocessing, nutrigenomics in brief.
- 3. Explore the applications of microbes in food biotechnology, new sources of food from microbes etc
- 4. Will be able to learn about plant food biotechnology and transplastomic technology
- 5. Will get the knowledge on applications of Animal food biotechnology and food safety and its regulation
- 6. Able to have an overview recent trends in GMOs and food biotechnology

Course Outcomes			F	Prog	ram	me	Out	con	nes	(POs)			Program Specific Outcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	2	-	2	1	-	-	-	-	-	1	2	1	1
CO2	2	-	2	-	3	2	-	-	-	-	-	1	2	1	1
CO3	1	1	1	-	2	2	-	-	-	-	-	1	2	1	2
CO4	2	-	2	-	2	1	1	-	-	-	-	1	2	1	1
CO5	2	1	1	-	3	1	-	-	•	-	-	1	2	1	2
CO6	1	-	1	-	2	2	-	-	-	-	-	2	2	1	1

UBT733N		Credits: 03
L:T:P – 3:0:0	INDUSTRIAL SAFETY	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

Industrial safety

Need for safety, importance of occupational health and safety, Health and safety programs, unsafe conditions, factors contributing to unsafe conditions, Good Lab Practices (GLP).

UNIT-I

12 Hrs.

Accidents: Accident preventive measure, Measurement and control of safety performance, 5E's for accident prevention- Engineering, Education, Enthusiasm, Enforcement and Evaluation. Hierarchy of Controls, Safety policy. Chemical Hazards: Types of hazards, Classification of chemicals based on their nature, routes to exposure of chemicals, Health effects of harmful chemicals in the work environment, Control of chemical hazards. 10 Hrs. UNIT-II **Electrical Hazards and Control measures** Electrical hazards, protection against voltage fluctuations, effects of shock on human body. Fire- Fire formation, Fire extinguishing agents. Evacuation procedures for workers during emergency conditions. Physical Hazards and Control measures: Noise, noise exposure regulation, properties of sound, Workers exposure to electromagnetic field, Ionizing radiation and non-ionizing radiations, effects of radiations, Classification of dangerous materials with pictorial symbols, Safety in transportation of dangerous materials by road, rail, ships and pipelines. UNIT-III 10 Hrs. Biological and Construction Hazards and their control measures Classification of Bio hazardous agents –bacterial agents, rickettsial and chlamydial agents, viral agents, fungal, parasitic agents, infectious diseases –Hazardous material used in labs, Instructions followed for hazardous waste disposal, Biohazard control program, Biological safety cabinets. Construction Hazards: Hazards in construction and safety measures, Good Manufacturing Practices (GMP). UNIT-IV 10 Hrs. Occupational Health and Toxicology Classification of Occupational hazards, occupational related diseases-silicosis, asbestosis, pneumoconiosis, etc. lead, nickel, chromium and manganese toxicity, effects and prevention Industrial toxicology, local, systemic and chronic effects, temporary and cumulative effects. Industrial Hygiene. Various types of Company policies. **REFERENCE BOOKS *** 1. Mark Friend and James Kohn, (2007), Fundamentals of Occupational Safety and Health The Scarecrow Press, Inc. 2. Phil Hughes and Ed Ferret, (2011), Introduction to Health and Safety at work, (5th edition), Elsevier Ltd. COURSE OUTCOMES**

After completion of the course student will be able to

- 1. Analyze the effects of hazards in workplace and select appropriate measures of safety for preventing industrial accidents and chemical hazards.
- 2. Identify physical and electrical hazards and apply control measures in work place for the prevention of fires and explosions.
- 3. Identify various types of biological hazards and understand the methods of hazard identification and preventive measures.

4. Assess the risks in the occupation, identify control measures and apply hygiene in the work place.

Course			F	Prog	Program Specific Outcomes (PSOs)										
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	1	2	-	1	3	-	-	-	-	-	1	1	1	1
CO2	-	1	2	-	1	3	-	-	-	-	-	1	1	1	1
CO3	-	1	2	-	1	3	-	-	-	-	-	1	1	1	1
CO4	-	1	2	-	1	3	-	-	-	-	-	1	1	1	1

B. E. VIII SEMESTER

Sl.	Category	Subject	Subject Title	Credits		lou1 Wee		Examination Marks			
No	No Category Code	9		L	Т	Р	CIE	SEE	TOTAL		
1.	PEC	UBT82XE	Elective-6	03	3	0	0	50	50	100	
2.	PEC	UBT83XE	Elective-7	03	3	0	0	50	50	100	
3.	PP	UBT805P	Project	15	0	0	30	50	50	100	
		Total		21	6	0	30	150	150	300	

Elective-6 UBT823E: Biosimulations UBT824E: Metabolic engineering

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

UBT825E: Bionanalytical techniques UBT827E: Pharmaceutical BT

Elective-7

UBT830E: Clinical research UBT832E: Health diagnostics UBT833E: Validation & quality control UBT834E: Product development UBT835E: Validation & quality assurance

UBT823E		Credits: 03
L:T:P – 3:0:0	BIOSIMULATIONS	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	08 Hours										
Modelling Principles: Basic modeling principles, uses of mathematical	modeling										
classification of modeling techniques Fundamental laws, energy equations,	continuity										
equation, equations of motion, transport equations, equations of state, equilibrium	n states and										
chemical kinetics-examples.											
UNIT–II	08 Hrs.										
Mathematical Models for Biochemical Engineering Systems: Mathematical	models for										
Biochemical engineering systems, Mathematical models in batch and continuo	us process,										
continuous flow tanks, reversible reaction.											
UNIT–III	16 Hrs.										
Simulation Softwares in Bioprocess: Introduction to SuperPro Designer for Mater	ial balance,										
Software for mass and energy balance; Energy Balance with and without reaction.	Metabolic										
Flux Balance Analysis: Introduction, Principle of steady state metabolic fl	ux balance										
analysis, COPASI, COBRA.											
UNIT–IV	08Hrs.										

Matlab and Simulink: MATLAB for data analysis Basics, Data analysis, curve fittings, Numerical integration, Euler and fourth order RungeKutta method, Simulation of gravity flow tank, SIMULINK for dynamic systems.

REFERENCE BOOKS *

1. Luben W.L. "Process Modelling Simulation and Control for Chemical Engineers", McGrawHill, International New York, 1990.

2. Franks RGE. "Mathematical Modeling in Chemical Engineering", John Wiley and Sons, Inc., New York, 2004.

3. Biquette W.B. "Process Dynamics- Modeling analysis with simulation", Prentice Hall; 1 edition January 15, 1998.

4. William J. Palm. "Introduction to Matlab 7 for Engineers", III, McGraw Hill 2005.

5. Kenneth J. Beers. "Numerical Methods for Chemical Engineering Applications in MATLAB", Massachusetts Institute of Technology, Cambridge University press 2007 edition.

6. <u>http://www.mathworks.com</u>

COURSE OUTCOMES**

Course Outcomes: After the completion of this course, students will be

- 1) Analyse the biological and bioprocess data and make suitable interpretation of them.
- 2) Handle mathematical models
- 3) Understand simulation software's for bioprocess development.
- 4) Analyze using Matlab and Simulink

UBT824E		Credits: 03		
L:T:P – 3:0:0	METABOLIC ENGINEERING	CIE Marks: 50		
Total Hours/Week: 03		SEE Marks: 50		

Introduction

Basic Concept of metabolic engineering overview of metabolism. Different models for cellular reactions, Mutation, mutagens mutation in metabolic studies.

UNIT-I

Metabolic regulation

An overview of Cellular Metabolism, Transport Processes, Passive Transport, Facilitated Diffusion, Active Transport, Fueling Reactions, Glycolysis, ermentative Pathways, TCA Cycle and Oxidative Phosphorylation, Anaplerotic Pathways, atabolism of Fats, Organic Acids, and Amino Acids, Biosynthetic Reaction, iosynthesis of Amino Acids, Biosynthesis of Nucleic Acids, Fatty Acids, and Other Building Blocks, Polymerization, Growth Energetics

Metabolic flux

Metabolic flux analysis and its application, Methods for experimental determination of metabolic flux by isotope dilution method.

UNIT-II

Applications of metabolic flux analysis

Amino Acid Production by Glutamic Acid Bacteria, Biochemistry and Regulation of Glutamic Acid Bacteria, Calculation of Theoretical Yields, Metabolic Flux Analysis of Lysine Biosynthetic Network in C. glutamicum, Metabolic Flux Analysis of Specific Deletion Mutants of C. Glutamicum, Metabolic Fluxes in Mammalian Cell Cultures, Determentation

10 Hours

10 Hrs.

of Ir	tracellular Fluxes., Computational Networks and Systems Biology									
	UNIT–III	10 Hrs.								
Reg Syst Con Reg	ulation of metabolic pathways ulation of Enzymatic Activity, Overview of Enzyme Kinetics, Simple Reversible I ems, Irreversible Inhibition, Allosteric Enzymes: Cooperativity, Regulation of E centration, Control of Transcription Initiation, Control of Translation, Global Co ulation at the Whole Cell Level, Regulation of Metabolic Networks, Branch Poin sification, Coupled Reactions and the Role of Global Currency Metabolites.	nzyme ontrol:								
	UNIT-IV	10 Hrs.								
Enhancement of Product Yield and Productivity, Ethanol, Amino Acids, Solvents, Extension of Substrate Range, Metabolic Engineering of Pentose Metabolism for Ethanol Production, Cellulose-Hemicellulose Depolymerization, Lactose and Whey Utilization, Sucrose Utilization, Starch Degrading Microorganisms, Extension of Product Spectrum and Novel Products, Antibiotics, Polyketides, Vitamins, Biopolymers, Biological Pigments, Hydrogen, Pentoses: Xylitol, Improvement of Cellular Properties, Alteration of Nitrogen Metabolism, Enhanced Oxygen Utilization, Prevention of Overflow Metabolism, Alteration of Substrate Uptake, Maintenance of Genetic Stability, Xenobiotic Degradation, Polychlorinated Biphenyls (PCBs), Benzene, Toluene, P-Xylene Mixtures (BTX).										
	ERENCE BOOKS *									
2. 3. 4.	John Willey, Roberts, 2007 "Metabolism of Agrochemicals in Plants" Willey Int,. David L. Nelson and Michael Cox, 2016, "Lehninger Principles of Biochemistr Edition	ology″								
5.	Lubert Stryer, 2010 "Biochemistry" -Freeman & Co., Pub.									
τοι	IRSE OUTCOMES**									
1. 2. 3. 4.	Recall the concepts of cellular metabolism. Explain the Basic concepts of metabolic engineering. Explain Fundamentals of Metabolic flux analysis. Apply the knowledge of metabolic flux analysis. Apply the knowledge of regulatory mechanism for altering the metabolic pat									

Course Outcomes			F	Prog	ram	me	Out	com	nes (POs)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	2	2	2			2							1	1	1	
CO2	2	2	2		2	3							2	1	2	
CO3	3	3	2		2	2						1	1	1	2	
CO4	3	3	3		2	3						1	2	1	3	

June

CO5	2	1		2	2	2			1	3	1
CO6	1	2	3	2	3	1			1	3	1

UBT825E		03 - Credits (3 : 0 : 0)		
Hours / Week : 03	BIOANALYTICALTECHNIQUES	CIE Marks : 50		
Total Hours : 40		SEE Marks : 50		

UNIT – 1	10 Hrs.
Centrifugation	
Introduction: Basic, Types of centrifuges: Desktop, High Speed and	Ultracentrifuge
(Preparatory and Analytical), Design and their working principle, Types	of Rotors, Wall-
effect	
Spectroscopy :	
(i) Absorption Spectroscopy	
Simple theory of absorption of light by molecules, Chromophore and	terminologies
associated with absorption of molecules	
The Beer-Lambert Law and its deviations	
Single and double beam spectrophotometers for measuring Visible	and Ultraviolet
light: Instrumentation and Parameters measured in absorption Spe	ectroscopy (UV-
Vis spectrophotometer)	
Empirical rule for the absorption spectra of biological macromolecules	
Chemical Analysis by absorption spectroscopy using Visible and Ultraviol	let light
(ii) Fluorescence Spectroscopy	
Simple theory of Fluorescence	
Instrumentation and Technology of Fluorescence Spectroscopy	(Fluorescence
spectrometer)	
Intrinsic Fluorescence measurements for information about the con	formation and
binding sites of proteins	
Extrinsic fluorescence measurements for information about the con	formation and
binding sites of proteins	
UNIT – 2	10 Hrs.
Principal, Basaveshwar Engineering College. BAGALKOT-587 102.	

(iii) Infrared Spectroscopy

Infrared Spectroscopy: Basic Principle Instrumentation and Technology of Infrared Spectroscopy (Fourier-transform infrared spectroscopy (FTIR))

Information in Infrared Spectra and Applications of Infrared spectroscopy

(iv) Optical Rotatory Dispersion (ORD) & Circular Dichroism (CD)

Theory of Optical Rotatory Dispersion (ORD) & Circular Dichroism (CD) Relative values of ORD and CD measurements, Advantages of CD over ORD Instrumentation for measuring ORD and CD, Applications of ORD and CD

(v) Nuclear Magnetic Resonance (NMR) Spectroscopy

Nuclear Magnetic Resonance (NMR) Spectroscopy : Principle Basic Instrumentation of **NMR** Spectrometer

Applications of NMR Spectroscopy

(vi) Mass spectrometry

Mass spectrometry: Basic Principle Instrumentation and main components of mass spectrometers Ionization source, Mass analyzers, and Detectors (LC-MS and GC-MS) **Applications of Mass Spectrometry**

UNIT – 3	10 Hrs.
Chromatography	
Adsorption Chromatography: Simple Theory & Types	
Operations of columns : Terminologies and concept	
Elution : Types of elution methods	
Supports : Concept of mesh size and mesh screen	
Gas Chromatography: Principle, Basic set up of Gas chromatography system	tem, Detectors
and Uses of Gas chromatography	
Gel Chromatography (molecular-sieve chromatography): Simple The	ory, Materials
(dextran, agarose and polyacrylamide gels), Advantages of gel ch	romatography,
Estimation of molecular	
weight and applications of gel chromatography	
Ion-Exchange Chromatography: Principle, Properties of Ion Exchangers	
Exchangers, Technique and application of Ion Exchange chromatography	
High-Performance of Liquid Chromatography (HPLC): Principle,	Application of
pressure in HPLC, Advantages and uses of HPLC.	
Affinity Chromatography: Principle, Methods of Ligand immobilizat	
bromide-activated agarose, Aminoethyl- and hydrazide-activated polya	crylamide), uses
of affinity chromatography	
UNIT – 4	10 Hrs.
Electrophoresis	
Iso-electric focusing (IEF): Principle, Technique and application, 2-E	D PAGE: Steps
involved in 2-D PAGE, application in proteomics	
Pulse-field gel electrophoresis: Principle, Technique and Application	
Capillary electrophoresis: Principle, Technique and Application	
X-ray crystallography	
Interaction of X-ray with matter: Absorption, Scattering and diffraction (
Preparation of crystals : Hanging and sitting drop vapor diffusion method	us
X-ray diffraction methods	
Application of X-ray Diffraction in Crystal structure	

REFERENCES

- 1. Fundamentals of Bioanalytical Techniques And Instrumentation, Ghosal, Sabari, Avasthi, Anupama Sharma, Second Edition, Phi Learning Pvt. Ltd., 2018.
- 2. Bioanalytical Techniques, Abhilasha Shourie, Shilpa S. Chapadgaonkar, The Energy and Resources Institute, 2015
- 3. Biomolecular and Bioanalytical Techniques: Theory, Methodology and Applications, Vasudevan Ramesh, John Wiley & Sons Ltd, 2019
- 4. Handbook of Analytical Techniques, Helmut Günzler, Alex Williams, WILEY, 2001
- 5. Analytical Techniques in Biotechnology, Suzy Hill, Syrawood Publishing House, 2016
- 6. Analytical Techniques In Biotechnology, Goutam Bhowmik, Tata McGraw Hill Education Private Limited, 2010
- 7. Instrumental Methods of Chemical Analysis, G. R. Chatwal and A. K. Sham, 5th edition Himalaya Publishing House, 2005.
- 8. Instrumental Analysis, D. A. Skoog, F. J. Holler, S. R. Crouch, 11th edition, Brooks/Cole, a part of Cengage Learning, 2012.

COURSE OUTCOMES

After completion of the course student will be able to

- 1. Understand the basic concepts and principles of the major analytical techniques including instrumentation, sample preparation and standardization.
- 2. Evaluate the proper application of various analytical techniques for problem solving in biological sciences.
- 3. Demonstrate the ability to plan and execute experiments, and analyze and interpret the outcomes.
- 4. Design an analytical regimen to obtain data relevant to their research problem

Course				Р	rogra	amm	e Ou	tcom	es				Programme Specific			
Outcomes					Outcomes											
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3	
CO 1	З	З	3									2	2	1		
CO 2	2	З	3									2	2	1		
CO 3	3	3	3									1	2	1		
CO 4	3	3	3									1	2	1		

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT827E		Credits: 3
L: T: P – 3-0-0	PHARMACEUTICAL BT	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	10 Hrs.								
Introduction:									
Introduction to pharmaceutical biotechnology, Pharmaceutical Industry. Drug design, deve	lopment								
and Economics, Fundamental principles and processes involved in preclinical and clinical									
development of a chemical or biological entity. Orphan drugs Provisions for and use of unli	censed								
medicines, Drug abuse and dependence, Prescription and Non-prescription drugs. Regulations &									
guidelines for pharma ,CDSCO, fda, ichq7, usfdA21 cfr part11.									
Drug metabolism:									
Evolution of Drug Metabolism as a Science, Phase I Metabolism (microsomal oxidation, hyd	droxylation,								
dealkylation) Phase II Metabolism (Drug conjugation pathway) . Pharmacodynamics and									
Pharmacokinetics of drugs.									
UNIT–II	10 Hrs.								
Toxicology:									
Basic concepts in toxicology, the mechanism of toxin action, biotransformation of toxins, the	neir								
inactivation and removal from the body, Reactive intermediates.									
Manufacturing principles and formulations:									
Definitions, applications, composition, preparation, physicochemical considerations,. Prefo	rmulation								
Testing, Tablets, compressed tablets, tablet granulation, Coatings, Pills, Parental preparation	ons, herbal								
extracts, Oral liquids, Ointments, short study of current biotech products, herbal medicines	s. Quality								
control, storage and stability of biotech products.									
UNIT–III	10 Hrs.								
Stem cells in health care:									
Introduction to Stem Cell Biology, Fate Mapping of Stem Cells, Mesenchymal Stem Cells, St	em Cells								
and Neurogenesis and its application, Epidermal Stem Cells, Liver Stem Cells, Pancreatic St	em Cells,								
Stem Cells in the Epithelium of the Small Intestine and Colon. Application of epidermal ster	m cell in								
Tissue engineering, Hematopoietic Stem Cells, Classification and clinical manifestations of									
hematopoietic stem cell disorders.									

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

June

Drug delivery system:

Advanced Sustained Release Drug Delivery System, Advanced drug Delivery Systems, Liposomes and Nanoparticles Drug Delivery System, Biodegradable Drug Delivery System, Hydrogel based Drug Delivery System.

10 Hrs.

Analysis of biologicals & pharmaceuticals:

Vitamins Cold remedies Laxatives Analgesics, NSAIO, External antiseptics, Antacids, Antibiotics, Biologicals, Herbal products. Packaging techniques – Glass containers, plastic containers, film wrapper, bottle seals.

UNIT-IV

Advanced pharmacology:

Introduction to pharmaceutical chemistry, classification of drugs based on therapeutic actions using suitable examples. Antineoplastic agents, Immunomodulators, Heavy metals and heavy metal antagonists, Therapeutic gases. Free radical biology and antioxidants.

REFERENCE BOOKS *

- Gary Walsh, (2013), Biopharmaceuticals Biochemistry and Biotechnology (2nd Edition), Wiley Publishers.
- 2. Bartram Katzung, (2009), Basic & Clinical Pharmacology (9th Edition), McGrawHill.
- 3. Leon Lachman, Herbert. Lieberman & Joseph Kanig, Vergese, (1987) The Theory & Practice of Industrial Pharmacy, (3 rd Edition) Publishing House Bombay.

COURSE OUTCOMES**

After completion of the course student will be able to

- 1. Apply and classify various biological sources of pharmaceutical products to retrieve the basic concept of pharmacology, drug metabolism .and their importance in biotechnology
- 2. Select and apply the toxicological studies of pharmaceutical products
- 3. Use knowledge of the techniques used in the manufacture of pharmaceutical products and apply in the field of Biopharmaceuticals.
- 4. Ability to discuss the concepts used in production of stem cells and analyse the applications and ethical issues of stem cells in the society.
- 5. Select and apply appropriate techniques advanced techniques in drug delivery system.
- 6. Demonstrate an ability to apply principles various other applications to protect the global community from various dreadful diseases.

Course Outcomes			F	Prog		Program Specific Outcomes (PSOs)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	2	2	2	3	3	1	-	-	-	-	-	3	2	1
CO2	-	3	3	3	3	2	3	-	-	-	-	-	2	2	1
CO3	-	2	3	2	3	1	-	-	-	-	-	-	3	2	-
CO4	-	2	3	2	3	1	-	-	-	-	-	-	2	2	-
CO5	-	3	3	2	3	1	-	-	-	-	-	-	2	3	-
CO6	-	3	3	3	3	2	2	-	-	-	-	-	2	2	3

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT830E		Credits: 03
L:T:P – 3:0:0	CLINICAL RESEARCH	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I	10 Hours
Introduction	
The philosophy behind organization of research. Disease target identification ar	
Patenting new active substances. Receptor-based approaches, agonists, antagon	nists,
enzyme inhibitors. Lead optimization and candidate selection of molecules for e	exploratory
human investigation. In vitro and In vivo testing of new compounds Relationship	o between
animal and human pharmacology.	
Clinical pharmacology	
Pre-clinical development to support testing in humans. Safety testing, Pharmace	eutical
development -formulations, manufacture and supply of materials, labeling and	
presentation, stability and storage, purity, compatibility, disposal; Concepts of	
Pharmacovigilance.	
UNIT–II	10 Hrs.
Therapeutics	
Clinical importance of Therapeutic Proteins, Antibodies, Enzymes; Hormones an	d Growth
Factors, Interferon's, Interleukins and Additional Regulatory Factors.	
Management of drugs	
Management of common acute and chronic diseases. Major drug classes includi	ng
biologicals. Measurement of drug effects Adverse drug reactions (short term &	long term).
Benefit and risk, Drug interactions; Prescribing for particular populations . Contr	olled drugs
and drug dependence, Over dosage and treatment of poisoning. Patient compli	ance and
information, Therapeutic Drug Monitoring.	
UNIT–III	10 Hrs.
Healthcare marketplace	
National and local formularies. Product information (Generic v/s Rx), advertising	g and claims
Product support and promotion Product life-cycle management Product liability	[,] Codes of
practice including the MHRA Blue Principles of health economics Pharmacoepid	emiology
Competition, in-licensing, co-marketing.	
Social, ethical issues	
patents and copyrights. Social-genetic discrimination: insurance and employme	ent, human
cloning, foeticide, sex determination. Ethical: somatic and germ line gene thera	
trials, the right to information, ethics committee function. Preservation and cli	nical use of
blood and blood components.	

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

June

	UNIT–IV	10 Hrs.
Clini	ical research	
Туре	es of Epidemiology study designs, ecological (correlation) studies, Case repo	ts and
case	e series, prevalence surveys or cross-sectional studies, case control studies, C	linical
Trial	ls, Small Clinical Trials, Placebo Responses in Clinical Trials, Large Clinical Tria	ls and
Regi	istries – Clinical Research Institutes, Data Management in Clinical Research:	General
Prin	ciples and Guide to Sources, Clinical Research from Pharmaceutical Industry	
	pective.	
REF	ERENCE BOOKS *	
1.	Gary Walsh., Biochemistry and Biotechnology, 2002, John Wiley & Sons Lto	l.
2.	Gallin and . J. I. Ognibene F. P, 2007 Principles and Practice of Clinical Resea	arch by, 2nd
	Edition, Elsevier Publication.	
3.	William J. Williams, Ernest Beutler, Allan JU. Erslev, Marshall A. Lichtman,2	005,
	Hematology,	
4.	John Wiley & Sons Ltd by Arunabha Ray & Kavitha Gulati, 2007, Current Tre	nds in
	Pharmacology IK Intl.	
τοι	IRSE OUTCOMES**	
1.	Exploit the knowledge to know the clinical importance of different therape	eutic
	products	
2.	An integrated understanding of the formulations, manufacturing and supp	ly of
	materials	
3.	Ability to study the philosophy behind organization of research Ability to u	nderstand
	control measures uised in drug and its control	
4.	Ability to elucidate the marketing strategies of pharma products	
	Ability to compare the social and ethical issues	
5.		

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes		Programme Outcomes (POs)													Program Specific Outcomes (PSOs)						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3						
C01	1	3	3	-	2	-	2	1	-	-	-	2	2	2	1						
CO2	1	2	3	-	1	-	2	1	-	-	-	3	3	1	1						
CO3	1	2	3	-	2	-	2		-	-	-	3	2	2	1						
CO4	1	3	3	-	1	-	1	1	-	-	-	2	2	1	1						
CO5	1	3	3	-	-	-	-	-	-	-	-	1	2	3							
CO6	1	3	3	-	1	-	2	-	-	-	-	3	3	3	3						

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

HEALTH DIAGNOSTICS UNIT-I disorders, Infectious diseases, Paras rs, single cell disorders and complex nosomal; karyotype analysis. (FISH and on-FISH), and comparative genetics: spectral karyotyping. DNA on, Southern blot diagnostics, array-le nomics, DNA sequencing, genetic pr noglobinopathies. Neuro developmer c mutations. G-banded chromosoma somal/sex chromosomal disorders. (t syndrome, Turner's syndrome, etc.) F appropriate probes) (e.g., chro 9-22	genomic, diagnostics: PCR based based diagnostics, rofiling, single ntal disorders. Neuro I preparations for translocation, deletion, FISH for detections of:
disorders, Infectious diseases, Paras rs, single cell disorders and complex nosomal; karyotype analysis. (FISH and on-FISH), and comparative genetics: spectral karyotyping. DNA on, Southern blot diagnostics, array-l enomics, DNA sequencing, genetic pr noglobinopathies. Neuro developmer c mutations. G-banded chromosoma somal/sex chromosomal disorders. (t syndrome, Turner's syndrome, etc.) F appropriate probes) (e.g., chro 9-22	10 Hours sitic diseases, Genetic a traits. Chromosomal genomic, diagnostics: PCR based based diagnostics, rofiling, single ntal disorders. Neuro I preparations for translocation, deletion, FISH for detections of: translocation; X-Y
disorders, Infectious diseases, Paras rs, single cell disorders and complex nosomal; karyotype analysis. (FISH and on-FISH), and comparative genetics: spectral karyotyping. DNA on, Southern blot diagnostics, array-l enomics, DNA sequencing, genetic pr noglobinopathies. Neuro developmer c mutations. G-banded chromosoma somal/sex chromosomal disorders. (t syndrome, Turner's syndrome, etc.) F appropriate probes) (e.g., chro 9-22	sitic diseases, Genetic a traits. Chromosomal genomic, diagnostics: PCR based based diagnostics, rofiling, single ntal disorders. Neuro I preparations for granslocation, deletion, FISH for detections of: translocation; X-Y
disorders, Infectious diseases, Paras rs, single cell disorders and complex nosomal; karyotype analysis. (FISH and on-FISH), and comparative genetics: spectral karyotyping. DNA on, Southern blot diagnostics, array-l enomics, DNA sequencing, genetic pr noglobinopathies. Neuro developmer c mutations. G-banded chromosoma somal/sex chromosomal disorders. (t syndrome, Turner's syndrome, etc.) F appropriate probes) (e.g., chro 9-22	sitic diseases, Genetic a traits. Chromosomal genomic, diagnostics: PCR based based diagnostics, rofiling, single ntal disorders. Neuro I preparations for granslocation, deletion, FISH for detections of: translocation; X-Y
rs, single cell disorders and complex nosomal; karyotype analysis. (FISH and on-FISH), and comparative genetics: spectral karyotyping. DNA on, Southern blot diagnostics, array-l enomics, DNA sequencing, genetic pr noglobinopathies. Neuro developmer c mutations. G-banded chromosoma somal/sex chromosomal disorders. (t syndrome, Turner's syndrome, etc.) F appropriate probes) (e.g., chro 9-22	genomic, diagnostics: PCR based based diagnostics, rofiling, single ntal disorders. Neuro I preparations for translocation, deletion, FISH for detections of: translocation; X-Y
rs, single cell disorders and complex nosomal; karyotype analysis. (FISH and on-FISH), and comparative genetics: spectral karyotyping. DNA on, Southern blot diagnostics, array-l enomics, DNA sequencing, genetic pr noglobinopathies. Neuro developmer c mutations. G-banded chromosoma somal/sex chromosomal disorders. (t syndrome, Turner's syndrome, etc.) F appropriate probes) (e.g., chro 9-22	genomic, diagnostics: PCR based based diagnostics, rofiling, single ntal disorders. Neuro I preparations for translocation, deletion, FISH for detections of: translocation; X-Y
UNIT-II	10 Hrs.
UNIT–II	10 Hrs.
-	
emoglobinopathies, mucopolysaccha n storage disorders, amyloidosis FACS, HLA typing, Bioassays	
UNIT–III	10 Hrs.
Reactions, Conjugation Techniques, A n Systems, Separation and Solid-Pha and parasitic infections. Diagnosis o etc.) Viral diseases-HIV etc., bacterial mycobacterium diseases. Phage displ	se Systems, Case f infectious diseases, diseases, enteric
UNIT–IV	10 Hrs.
epts), Invasive and Non-Invasive, Elec bhalography (EEG), Use of EEG, Comp nance Imaging (MRI), uses of MRI, Uh d Organization of Imaging Services in Facilities, Layout, Organization, Organ ection.	outerized Tomography trasound Imaging (US), Hospital,
	storage disorders, amyloidosis ACS, HLA typing, Bioassays UNIT–III Reactions, Conjugation Techniques, An Systems, Separation and Solid-Pha and parasitic infections. Diagnosis of tc.) Viral diseases-HIV etc., bacterial nycobacterium diseases. Phage disp UNIT–IV epts), Invasive and Non-Invasive, Election phalography (EEG), Use of EEG, Compliance Imaging (MRI), uses of MRI, UI d Organization of Imaging Services in Facilities, Layout, Organization, Org

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

- 1. Lisa Anne Shimeld., 2000 Essentials of Diagnostic Microbiology
- 2. Balley & Scott's. 1998 Diagnostic Microbiology, 2ND edition,
- 3. Burtis & Ashwood, Tietz ,2005, Text book of Clinical Biochemistry.

COURSE OUTCOMES**

- 1. Ability to study Biochemical disorders, chromosomal disorders.
- 2. Able to study DNA based diagnostics.
- 3. Analyse Biochemical diagnostics.
- 4. Understand cell based diagnostics.
- 5. Analyse Immunodiagnostics
- 6. Understand imaging diagnostics

Course			F	Prog	Program Specific Outcomes (PSOs)										
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	-		2	-	-	-	-	-	-	1	1	1
CO2	2	2	2	-	2	3	-	-	-	-	-	-	2	1	2
CO3	3	3	2	-	2	2	-	-	-	-	-	1	1	1	2
CO4	3	3	3	-	2	3	-	-	-	-	-	1	2	1	3
CO5	1	3	3	-	-	-	-	-	-	-	-	1	2	3	
CO6	1	3	3	-	1	-	2	-	-	-	-	3	3	3	3

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

	10.11
UNIT-I	10 Hrs.
Introduction Validation and Regulatory Affairs in Bio (Pharmaceutical) Manufacturing: An Introduction to Operations & Industry Compliance Regulations, The Fundamentals of Regulatory Compliance respect to Good Clinical Practice (GCP), Good Manufacturing Practice (GMP) & Good Labora Practice (GLP). An Introduction to the Basic Concepts of Process Validation & Qualification & PQ) Procedures, A Review of Prospective, Concurrent, Retrospective Validation & Revalic Validation of Water, Active Pharmaceutical Ingredients (APIs) & Aseptic Processes. Validation Non- Sterile Processes (used in the manufacture of Solids, Liquids, & Semisolid Dosage Forr and ICH guidelines.	ce with atory (IQ, OQ dation . on of
UNIT–II	10Hrs.
Medical Device, In-Vitro Diagnostics & Packaging Validation Issues, Validation of Analytical Methods, Computerized & Automated Systems under 21 CFR Part 11. Standards Introduction, ISO 9000 Series of Standards, Management Responsibility, Quality System, Co Review, Design Control, Document and Data Control, Preservation and Delivery, Control of Records, Internal Quality Audits, Training, Servicing, Statistical Techniques, ISO-9001-2000, Normative Reference, Terms and Definitions, Quality Management, System, Documents Requirements, Management's Responsibility, Resource Management, Infrastructure, Produ Realization, Measurement, Analysis and Improvement, ISO-14001 - Environmental Manage	ontract Quality Scope, ict
Systems.	40.11.5
UNIT–III	10 Hrs.
Implementation The Influence of Good Automated Manufacturing Practice (GAMP); The FDA's Approach to Inspections of Pharmaceutical Companies. Quality System, Contract Review, Design Control, Document and Data Control, Purchasing, of Customer Supplied Product, Product Identification and Traceability, Process Control, Insp and Testing, Final Inspection and Testing, Control of Inspection, Measuring and Test Equipr Inspection and Test Status, Control of Nonconforming Product, Corrective and Preventive A Handling, Storage, Packaging, Preservation and Delivery, Control of Quality Records, Intern Quality Audits, Training, Servicing, Statistical Techniques. Quality Objectives, Quality Planning, Quality Control, Quality Assurance, Quality Improvem	Control pection ment, Action, al
UNIT–IV	10 Hrs.
Quality Terminology Relating to Quality, Quality Requirement, Customer Satisfaction, Capability; Te Relating to Management, Management System, Quality Management System, Quality Polic Continual Improvement, Effectiveness, Efficiency; Relating to Process and Product, Process, Product, Procedure; Terms relating to Characteristics, Quality Characteristics; Terms Relatin Conformity, Non-Conformity, Defect, Preventive Action, Corrective Action, Correction, Rew Regrade, Repair, Scrap, Concession, Deviation Permit, Release; Terms Relating to Documen Information, Document, Specification, Quality Manual, Quality Plan, Record; Terms Relating	cy, , ng to vork, itation,

Examination, Objective Evidence, Inspection, Test. Metrological Confirmation.

REFERENCE BOOKS*

- 1. Pharmaceutical Process Validation, 3rd Edition, Edited by Robert Nash and Alfred Wachter, Marcel Dekker, 2003
- 2. Good Manufacturing Practices for Pharmaceuticals: A Plan for Total Quality Control From Manufacturer to Consumer, Sidney J. Willig, Marcel Dekker, 5th Ed., 2000, 723 pp.,
- 3. Validation of Pharmaceutical Processes: Sterile Products, Frederick J. Carlton (Ed.) and James Agalloco (Ed.), Marcel Dekker, 2nd Ed., 1998.
- 4. Validation Standard Operating Procedures: A Step by Step Guide for Achieving Compliance
- 5. Pharmaceutical Equipment Validation: The Ultimate Qualification Handbook, Phillip A. . Cloud,Interpharm Press, 1998.
- 6. Commissioning and Qualification, ISPE Pharmaceutical Engineering Baseline Guides Series, 2001.

COURSE OUTCOMES**

- 1. Ability to comprehend the validation techniques, process, concepts.
- 2. Ability to analyse the good practices in lab, clinical and manufacturing practices
- 3. Ability to retrieve the regulations , fundamentals of validations and its procedures
- 4. Capable of understanding the ISO standards and environmental management systems
- 5. An ability to analyse the analytical methods of validation, issues and automated system and standards
- 6. Ability to interpret guidelines and discuss the case studies
- 7. Ability to discuss the quality control measures used in industries
- 8. Ability to analyse the Quality Management System

Course Outcomes		Programme Outcomes Programme Speci Outcomes														
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3	
CO 1	2					2	3	1						1	3	
CO 2	2			2		3	3	3					2	2	3	
CO 3	3					3	2	2				3	2	3	2	
CO 4	2					3	1	3				3	2	3	3	
CO 5	2					2	3	3				2	2	2	3	
CO 6	2			2		2	1	2				2	2	3	2	
CO 7	2			1		3	1	2				1	2	3	2	
CO8	2			2		3	1	2				3	3	2	2	

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

		522 Marks: 50
	UNIT-I	12 Hrs.
Essentials of product developn	nent	
Standard Operating Procedure competitor studies. Stability stu	ess, privacy policies and Knowledge of (SOPs), process flows in manufacturin udies – Stability Testing of new Drug S sting, storage conditions. Manufactur	ng, product life cycle and Substances and Products –type
pharma Products. Production c	of pharmaceuticals by genetically eng	-
vaccines. Approved Biotech Dru		4011-
	UNIT–II	12Hrs
eport any anticipated reason	uirements, company policies, delive ns for the delay, effective interpe tance of collaborative working, m	ersonal communication, confli
members, knowledge of projec		
members, knowledge of projec	UNIT-III	10 Hrs
Reporting and formulations		101113
,	treatment. Activity screening, formul s, geriatric products, veterinary produ UNIT–IV	
Safety and Security at workpla		
& safety measures. Use of saf workers and visitors. Health, sa of dangerous materials with p	I health hazards, knowledge of chem ety gears, masks, gloves and access afety and security issues – types (illn pictorial symbols, Safety in transport Safety in bulk storage of hazardous su	ories, evacuation procedures f less, fire accidents). Classificati cation of dangerous materials
Raton: CRC Press.	and Chow, S. (2017). Biosimilar Dru tical product development. New Delh	
COURSE OUTCOMES**		
	d apply the techniques and essentials ne various techniques in Pharma indu	• •

PRODUCT DEVELOPMENT

UBT834E L: T: P – 3-0-0

Total Hours/Week: 03

Credits: 3

CIE Marks: 50 SEE Marks: 50

7. Analyse and list the various health hazards in industry.

8. Ability to understand importance of safety and implement in various Industries.

Course Outcomes		Programme Outcomes											_	Programme Specific Outcomes					
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3				
CO 1		2	2	3	1			3	1		2	2	2	1	1				
CO 2		2	2	3	3		2					3	2	1					
CO 3					2	3		2	3	3	3	3	2	1	1				
CO 4		3	3	3	3	3	2	3	3	3	3	3	2	1	2				
CO 5			3	3	3		2			2	2	3	2	1					
CO 6					2							3	2	1					
CO 7				2	3	3		3					2	1					
CO 8					2	3	3	3				2							

UBT835E
L: T: P – 2-0-0
Total Hours/Week: 02
2

VALIDATION & QUALITY ASSURANCE

	7 Hrs.
ntroduction	
Validation and Regulatory Affairs in Bio (Pharmaceutical) Manufacturing: An Introduction to	o FDA
Operations & Industry Compliance Regulations, The Fundamentals of Regulatory Compliand	e with
respect to Good Clinical Practice (GCP), Good Manufacturing Practice (GMP) & Good Labora	atory
Practice (GLP). An Introduction to the Basic Concepts of Process Validation & how it Differs	from
Qualification (IQ, OQ & PQ) Procedures, Validation life cycle, A Review of Prospective, Conc	urrent,
Retrospective Validation & Revalidation . FDA and ICH guidelines.	
UNIT–II	6 Hrs.
Types of Validation	
Validation of Water & Thermal Systems, including HVAC Facilities & Cleaning Validation. Va	lidation
of Active Pharmaceutical Ingredients (APIs) Packaging Validation Issues, Validation of	
Analytical Methods, Computerized & Automated Systems under 21 CFR Part 11.	
Standards	
Introduction, ISO 9000 Series of Standards, Management Responsibility, Quality System, Co	
Review, Design Control, Document and Data Control, Preservation and Delivery, Control of	Quality
Records, ISO-9001-2000, Scope, Normative Reference, Terms and Definitions, Quality	
Management, System, Documents Requirements, Management's Responsibility, Resource	
Management, Infrastructure, Product Realization, Measurement, Analysis and Improvemen	it, ISO-
14001 - Environmental Management Systems	
UNIT–III	7 Hrs.
Quality Assurance	
	_
Review, Design Document and Data Control, Purchasing, Control of Customer Supplied Proc	duct,
Review, Design Document and Data Control, Purchasing, Control of Customer Supplied Proc Process Control, Corrective and Preventive Action, Handling, Storage, Packaging, Preservati	duct <i>,</i> on and
Review, Design Document and Data Control, Purchasing, Control of Customer Supplied Proc Process Control, Corrective and Preventive Action, Handling, Storage, Packaging, Preservati Delivery, Control of Quality Records, Internal Quality Audits, Quality Objectives, Quality Pla	duct <i>,</i> on and
The Influence of Good Automated Manufacturing Practice (GAMP), Quality System, Contrac Review, Design Document and Data Control, Purchasing, Control of Customer Supplied Proc Process Control, Corrective and Preventive Action, Handling, Storage, Packaging, Preservati Delivery, Control of Quality Records, Internal Quality Audits, Quality Objectives, Quality Plan Quality Control, Quality Assurance, Quality Improvement.	duct, on and nning,
Review, Design Document and Data Control, Purchasing, Control of Customer Supplied Proc Process Control, Corrective and Preventive Action, Handling, Storage, Packaging, Preservati Delivery, Control of Quality Records, Internal Quality Audits, Quality Objectives, Quality Plan Quality Control, Quality Assurance, Quality Improvement. UNIT–IV	duct <i>,</i> on and
Review, Design Document and Data Control, Purchasing, Control of Customer Supplied Proc Process Control, Corrective and Preventive Action, Handling, Storage, Packaging, Preservati Delivery, Control of Quality Records, Internal Quality Audits, Quality Objectives, Quality Plan Quality Control, Quality Assurance, Quality Improvement. UNIT–IV Quality Control	duct, on and nning,
Review, Design Document and Data Control, Purchasing, Control of Customer Supplied Proc Process Control, Corrective and Preventive Action, Handling, Storage, Packaging, Preservati Delivery, Control of Quality Records, Internal Quality Audits, Quality Objectives, Quality Plan Quality Control, Quality Assurance, Quality Improvement. UNIT–IV Quality Control Efficiency; Relating to Process and Product, Process characteristics, Quality Characteristics,	duct, on and nning, <u>6 Hrs.</u>
Review, Design Document and Data Control, Purchasing, Control of Customer Supplied Proc Process Control, Corrective and Preventive Action, Handling, Storage, Packaging, Preservati Delivery, Control of Quality Records, Internal Quality Audits, Quality Objectives, Quality Plan Quality Control, Quality Assurance, Quality Improvement. UNIT–IV Quality Control Efficiency; Relating to Process and Product, Process characteristics, Quality Characteristics, Documentation, Information, Specification, Quality Manual, Quality Plan, Record of Examin	duct, on and nning, 6 Hrs. ation,
Review, Design Document and Data Control, Purchasing, Control of Customer Supplied Proc Process Control, Corrective and Preventive Action, Handling, Storage, Packaging, Preservati Delivery, Control of Quality Records, Internal Quality Audits, Quality Objectives, Quality Plan Quality Control, Quality Assurance, Quality Improvement. UNIT–IV Quality Control Efficiency; Relating to Process and Product, Process characteristics, Quality Characteristics,	duct, on and nning, 6 Hrs. ation,

REFERENCE BOOKS*

- 1. Pharmaceutical Process Validation, 3rd Edition, Edited by Robert Nash and Alfred Wachter, Marcel Dekker, 2003
- 2. Good Manufacturing Practices for Pharmaceuticals: A Plan for Total Quality Control From Manufacturer to Consumer, Sidney J. Willig, Marcel Dekker, 5th Ed., 2000, 723 pp.
- 3. Validation of Pharmaceutical Processes: Sterile Products, Frederick J. Carlton (Ed.) and James Agalloco (Ed.), Marcel Dekker, 2nd Ed., 1998.
- 4. Validation Standard Operating Procedures: A Step by Step Guide for Achieving Compliance
- 5. Pharmaceutical Equipment Validation: The Ultimate Qualification Handbook, Phillip A. Cloud, Interpharm Press, 1998.
- 6. Commissioning and Qualification, ISPE Pharmaceutical Engineering Baseline Guides Series, 2001.

COURSE OUTCOMES**

- 1. Ability to comprehend the validation techniques, process, concepts.
- 2. Ability to analyse the good practices in lab, clinical and manufacturing practices
- 3. Capable of understanding the ISO standards and environmental management systems
- 4. Ability to analyse the analytical methods of validation, issues and automated system and standards
- 5. Ability to discuss the quality control measures used in industries
- 6. Ability to analyse the Quality Management System

Course Outcomes		Programme Outcomes												gramme Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3	
CO 1	2				2	2								1	3	
CO 2	2	3	1	2	3	3							2	2	3	
CO 3	3	2			3	3						3	2	3	2	
CO 4	2	2	1		3	3	1					3	2	3	3	
CO 5	2	1			2	2	3					2	2	2	3	
CO 6	2		1	2	2	2	1					2	2	3	2	

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE DEPARTMENT OF BIOTECHNOLOGY SCHEME OF TEACHING AND EXAMINATION

2021-2022

SI.	Subject			Но	ours/Week		Еха	minatio	n		
No.	Code	Subject Title						Marks			
			Credits	Lecture	Tutorial	Practical	CIE	SEE	Total		
1	UBT418C	Molecular Biology	3	3	0	0	50	50	100		
2	UBT406C	Immunotechnology	3	3	0	0	50	50	100		
3	UBT412C	Heat and Mass Transfer	3	3	0	0	50	50	100		
4	UBT415C	Biostatistics & Bio- modeling	3	2	2	0	50	50	100		
5	UBT419C	Thermodynamics	3	3	0	0	50	50	100		
6	UBT408L	Molecular Biology Lab	1.5	0	0	3	50	50	100		
7	UBT410L	Immunotechnology Lab	1	0	0	2	50	50	100		
8	UBT412L	Biostatistics Lab	1.5	0	0	3	50	50	100		
9	UHS001N	Fundamentals of Quantitative Aptitude & Soft skills	1.0	1	0	0	50	50	100		
10	UHS004M	Universal Human Values-II	0	3	0	0	50	50	100		
		Total	20	18	02	8	500	500	1000		

B.E. IV SEMESTER

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

UBT418C		Credit	ts: 03
L:T:P - 3:0:0	MOLECULAR BIOLOGY	CIE Ma	rks: 50
Total Hours/Week: 03		SEE Ma	rks: 50
	UNIT-I		12 Hrs.
Introduction:			
Genes and their location. Informa	tion flow in biological systems: central	dogma, updated ce	ntral dogma
Signalling (signal transduction)-mo	lecular mechanism. Reverse genetics, (Genetic code-its fea	tures, codoi

Replication-basic concepts, structure and function of DNA polymerases, ligases, helicase. mechanism of DNA replication in prokaryotes and eukaryotes, End replication problem in eukaryotes, telomerase and its role, DNA damage & Repair (Photo reactivation, excision repair, recombinational repair, SOS repair).

and anticodon. **Replication:**

DNA damage & Repair (Photo reactivation, excision repair, recombinational repair, SOS repair).	
UNIT–II	10 Hrs.
Transcription:	
Mechanism of transcription in prokaryotes and eukaryotes, Bacterial RNA polymerase, structure	and function
of RNA polymerases (prokaryotes & eukaryotes), general transcription factors, post tr	anscriptional
processing, Si RNA, Antisense RNA technology.	
Translation:	
Protein synthesis: Initiators, Elongation factors, termination codons, Mechanism of translation, S	
function of prokaryotic and eukaryotic ribosomes, Post translational modification. Different	ces between
prokaryotic and eukaryotic protein synthesis, inhibitors of translation.	
UNIT–III	10 Hrs.
Gene Expression in Prokaryotes:	
Regulation of gene expression in prokaryotes: Operon model-structure and function, galactose	and lactose
operon, tryptophan Operon-regulation by attenuation mechanism; positive versus negative regu	ulation, cyclic
AMP effect/catabolite repression.	
Gene Expression in Eukaryotes:	
Regulation of eukaryotic gene expression, hormonal regulation- peptide and steroid	-
transcriptional control, super secondary structures-Helix turns Helix. Zinc fingers and Leucine Z	lippers. Gene
silencing-methylation, chromatin modification.	
UNIT–IV	10 Hrs.
Transposons and Oncogenes:	
Transposons-replicative and non replicative mechanisms, Insertion sequences, AC/DS elements,	
in maize (McClintock's work), Cut and paste transposition, Oncogenes and Protooncogen	nes, Tumour
suppressor genes, retroviruses and its life cycle.	
Genetic Recombination:	
Genetic recombination in bacteria- transformation, transduction and recombination, M	echanism of
recombination-homologous (Holliday model), site specific recombination.	
Reference Books *	

- 1. David Nelson and Michael Cox, (2017), Lehninger Principles of Biochemistry (6th Edition), W.H. Freeman
- 2. James Watson (2008), Molecular Biology of the Gene (5th Edition) Pearson Education
- 3. David Freifelder, (2008), Essentials of Molecular Biology (2nd Edition), Narosa Publishing House

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

Course Outcomes**

After completion of the course student will be able to

- 1. Emphasize on the basic aspects of molecular biology; the key areas and apply the knowledge in information flow in biological systems, reverse genetics and genetic code.
- 2. Classify and compare the mechanism of DNA repair processes, replication.
- 3. Acquire working knowledge on the mechanism of transcription, translation and post translational processes stepwise and their applications in the research.
- 4. Identify the various mechanism of gene regulation in prokaryotes and eukaryotes.
- 5. Identify the steps of transposition and concept of oncogenes.
- 6. Identify, describe and classify the molecular mechanism of genetic recombination.

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)					
	1	1 2 3 4 5 6 7 8 9 10 11 12									1	2	3					
CO1	1	-	2	1	3	2	1	-	-	-	-	-	3	1	-			
CO2	1	-	1	3	3	2	2	-	-	-	-	-	3	2	-			
CO3	1	-	1	3	2	1	1	-	-	-	-	-	3	1	-			
CO4	1	-	3	3	3	2	3	-	-	-	-	-	3	2	-			
CO5	1	-	3	3	3	2	3	-	-	-	-	-	3	2	-			
CO6	1	-	3	3	3	2	3	-	-	-	-	-	3	2	-			

L:T:P - 3:0:0	IMMUNOTECHNOLOGY	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50
		1011
	UNIT-I	10Hrs.
cells. Primary (thymus, bone m spleen, MALT, CALT). Innate complement activation, (classic	of the immune system: Lymphoid cells, phagocyte harrow and lymphatic system) and secondary Lymp e and adaptive immunity. Antigens, Antibodic cal, alternative and lectin pathway) regulation and ines and their role in immune response. M	phoid organs (lymph nodes es, Complement system biological consequences o
	UNIT-II	10 Hrs.
determinants on immunoglobul types, T-cell maturation and ac	bulin classes (IgG, IgA, IgE, IgD and IgM) and b lin's- Isotype, Allotype and Idiotype. Thymus derive ctivation, mechanisms of T cell activation. Cell de- nplex and antigen presentation. Antigen presen pagocytosis.	d lymphocytes (T cells) and ath and T-cell populations.
	UNIT-III	10 Hrs.
diseases, Animal models for a secondary immunodeficiency or rejection, Types of transplantati Vaccines: Active and Passive i	I its types. Autoimmune disorders- Organ speci autoimmune diseases and treatment of autoimm disorders (AIDS). Transplantation Immunology: im ions. immunization. Designing vaccines for active immu unit vaccines, recombinant vector vaccines and DNA	nune disease. Primary and munological basis of graft unization: Live, attenuated
	UNIT-IV	10Hrs.
Principal and applications of	ecipitation reactions, agglutination reactions, Bloc f ELISA, Radio immuno assay (RIA), western methods of detection of antigens - Enhanced tigens.	blot analysis, immuno-
 Kuby, J.(2019), Immunolo Chakravarthy, A.K.(2006), 	mmunology (13th edition), Wiley Blackwell ogy(8th edition), W H Freeman publishers ,Immunology & Immunotechnology, Oxford Univers nunodiagnostics (1 st Edition), New Age International	•
Course Outcomes**		

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Credits: 03

UBT406C

After completion of the course student will be able to

- 1. Understand Immune system.
- 2. Analyze the humoral and cell mediated immune system.
- 3. Explain the immunological disorders.
- 4. Evaluate the Transplantation immunology.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

5. Understand the designing of Vaccines.

6. Understand Ag Ab reaction and applications of Electrophoresis in Immunology.

- * Books to be listed as per the format with decreasing level of coverage of syllabus
- ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				F	Progra	amme	e Outo	come	s (PO	s)				Programme Specific Outcomes (PSOs)		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3	
CO 1	3	3	2	-	-	-	-	2	-	-	-	3	-	1	3	
CO 2	2	2	1	3	2	-	3	-	-	-	-	3	3	1	3	
CO 3	3	1	1	-	2	2	3	1	-	-	-	3	1	1	2	
CO 4	2	2	2	2	2	2	-	-	-	-	-	2	-	2	1	
CO 5	3	1	2	-	2	-	1	1	-	-	-	2	1	-	2	
CO 6	2	2	2	-	-	1	-	-	-	-	-	2	2	3	2	

UBT412C		Credits	s: 03
L:T:P –3:0:0	HEAT AND MASS TRANSFER	CIEMark	
Total Hours/Week: 03		SEEMark	ks:50
	UNIT-I		10 Hrs.
Introduction to Heat Transfer	:		
Modes of heat transfer; Cond	duction – steady state heat conduction through uni	-layer and mul	tilayer plane
wall sphere, cylinder; Insulati	on – types, critical radius, Optimum thickness of ins	ulation. Forced	and Natural
convection; Significance of Di	mensionless numbers (Nu, Gr, Pr, Re, Pe numbers c	only); Heat tran	sfer without
phase change, heat transfer	in laminar and turbulent flow inside closed condu	ucts, concepts	of film heat
transfer coefficients.			
	UNIT-II		10 Hrs.
Heat Transfer Equipment's:			
Equations and numerical prob	plem for calculations of film heat transfer coefficient	s, Heat transfe	r with phase
change - Condensation – film	wise and drop wise; Boiling – types of boiling. Co c	urrent and cou	nter current
flow. Individual and overall	Heat transfer coefficients, LMTD, Elementary de	sign of doubl	e pipe heat
exchanger and shell and tube	-	-	
-	UNIT-III		10 Hrs.
	ations. Liquid-Liquid, Solid-Liquid, Liquid-Gas, Solid onsiderations, design equations and equipments Illization and evaporation	•	
	UNIT-IV		10 Hrs.
Mass transfer Operations- Dis			
Methods of distillation –Sim	ple, Flash distillation of binary mixtures - relative	volatility, frac	ctionation of
binary mixtures -McCabe Th	iele method, Extractive and Azeotropic distillation,	, numerical. Dr	ying: Drying
rate, drying curve and calculat	tions, drying equipment.		
Reference Books *			
1. McCabe WL, Smith JC a Hill Publications, USA	nd Harriott (2005) Unit operations in Chemical Engin	eering, 7th Edr	n., McGraw-
2. Treybal RE (2012) Mass	Transfer Operations, 3rd Edition, McGraw-Hill Public	ations, USA.	
	r (2018) Coulson and Richardson's Chemical Engineer	-	at and Mass
		inemann	
	ioprocess Engineering Principles, 2nd Edition, Academ A, Clump CW, Maus L and Anderson LB (2008). Prin		Onerations
2nd Edn. John Wiley &	•••••••••••••••••••••••••••••••••••••••	icipies of Office	
	Sons. USA.		•
•	Sons, USA. eat Transfer, 2nd Edn. McGraw-Hill Publications, USA.		

June

Course Outcomes**

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

June

After completion of the course student will be able to

- 1. Define the different modes of heat transfer and solve the problems
- 2. Determine heat flux and temperature distribution in steady state one- dimensional problems using thermal resistance concept.
- 3. Estimate the heat transfer rate for different types of heat exchangers.
- 4. Predict mass transfer rates and mass transfer coefficients.
- 5. Estimate the number of theoretical plates required for effective separation of liquid mixtures.
- 6. Determine various parameters of mass transfer operations.

*Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Program Specific Outcomes (PSOs)											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	2	1	-	-	-	-	-	-	1	2	-	-
CO2	3	2	3	3	2	-	-	-	-	-	-	2	2	-	-
CO3	2	3	2	2	1	-	-	-	-	-	-	1	2	-	-
CO4	3	2	1	1	1	-	-	-	-	-	-	1	2	-	-
CO5	2	3	3	2	1	-	-	-	-	-	-	1	2	-	-
CO6	2	2	2	1	1	-	-	-	-	-	-	1	2	-	-

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT415C	
---------	--

L: T: P - 2:2:0

Total Hours/Week: 04

BIOSTATISTICS & BIO-MODELING

Credits: 03 CIE Marks: 50 SEE Marks: 50

Introduction and Descriptive Statistics:

Scope of biostatistics, presentation of data, Diagrammatic and graphical represent, (simple, multiple, component bar diagrams, pie chart, histogram, frequency polygon, frequency curve, ogive curve). Measure of central tendency (meaning of central tendency, arithmetic mean, median, Quartiles, mode, geometric mean, harmonic mean their merits and demerits). Measure of dispersion: meaning, range, quartile deviation, mean deviation and standard deviation, coefficient of variation, skewness and kurtosis. Correlation and linear regression analysis, curve fitting straight line).

UNIT-II

UNIT-I

Probability and Probability Distributions:

Definition of probability, Event, Mutual Exclusive, Independent, Complimentary Events Addition and Multiplication theorem of probability and examples. Discrete probability distributions: Bernoulli's, Binomial and Poisson distribution. Continuous probability distribution – normal, Standard normal variate, properties of normal curve, T, F and χ^2 (Chi square -goodness of fit test) distributions and their applications in Biology.

UNIT–III	10 Hrs.
Statistical Inference, ANOVA and Design of Experiments:	
Patienation theory and testing of humathesis usint estimation internal	

Estimation theory and testing of hypothesis point estimation, interval estimation. Sample, population, sample size determination. Methods of Sampling techniques- random (simple, stratified and systematic) non random sampling -(Judgement and convenience). Definition of analysis of variance(one way and two way classifications), Basic principles of experimental design and limitations-randomization, replication, local control, Types of statistical designs of biological experiments and limitations-CRD, RCBD, LSD, Plackett-Burmann design, Response surface methodology(RSM).

UNIT-IV

10 Hrs.

Bio-modeling:

Microbial Growth in a Chemo-stat, Growth Equations of Microbial Populations, product formation models, Models of Commensalisms, Batch culture model, Mutualism, Predation and Mutation. Simple Prey predator model, Volterra's Model for n Interacting Species. Basic Models for Inheritance, Applications of probability in genetics, Hardy - Weinberg law. Selection and Mutation Models, Genetic Inbreeding Models. Dose response studies.

Reference Books *

1.Khan and Khanum, (2008),Fundamentals of Biostatistics(3rd edition), Ukaaz Publication

- 2.Kapur J.N. (2001), Mathematical Models in Biology and Medicine (1st edition), New age international Pvt. Ltd.
- 3. Agarwal B.L. (2009), Basic statistics (5th edition), New age international Publishers
- 4. Rastogi V. B. (2006), Fundamentals of Biostatistics, Ane Books

10Hrs.

10 Hrs.

Course Outcomes**

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

After completion of the course student will be able to

- 1. Demonstrate and understand the basic concepts of biostatistics, analysis of measure of central tendency and dispersion.
- 2. Ability to know the basic principles of probability and distributions in Biology and Genetics
- 3. Analyse and interpret data regarding various distributions (T-test, F-test, and chi square)
- 4. Basic principles and designs of experimentation and ANOVA
- 5. Perform experimental design (RSM, Plakett Burman, LSD, CRD, RCBD)
- 6. Ability to study the microbial growth in chemostat, product formation and biomodelling in various parameters

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Pro	ogran	mme	Out	come	es (Po	Os)			Program Specific Outcomes (PSOs)							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3					
CO1	3	3	2	3	3	-	-	-	-	-	2	2	2	1	1					
CO2	3	3	3	3	3	2	-	-	-	-	1	3	2	1	2					
CO3	2	3	1	3	3	-	-	-	-	-	1	2	2	1	1					
CO4	2	3	1	3	3	-	-	-	-	-	1	-	-	-	-					
CO5	3	1	2	-	2	-	1	1	-	-	-	2	1	-	2					
CO6	2	2	2	-	-	1	-	-	-	-	-	2	2	3	2					

UBT419C		Credits: 03		
L: T: P - 3:0:0	THERMODYNAMICS	CIE Marks: 50		
otal Hours/Week: 03		SEE Marks: 50		

	10 Hrs.
Introduction System, surrounding & processes, closed and open systems, intensive & extensive properties, st	•
functions, equilibrium state, reversible and irreversible processes. First Law of Thermodynam statement of first law of thermodynamics, first law for cyclic process, Non-flow process, flow process, flow process, Non-flow process, flow process, flow process, Non-flow process, Non-flow process, flow process, Non-flow process, Non-flow process, flow process, Non-flow process,	
UNIT–II	10Hrs.
Second law of thermodynamics & P-V-T behaviour General statement of the second law, concept of entropy, the Carnot principle, calculation changes, Clausius inequality, entropy and irreversibility, third law of thermodynamics. P-V-T k pure fluids, equations of state and ideal gas law, processes involving ideal gas law: const constant pressure, constant temperature, adiabatic and polytropic processes. Equations of principles of corresponding states, compressibility charts.	behaviour of cant volume,
UNIT–III	10 Hrs.
Thermodynamic Properties of Pure Fluids Derived properties, work function, Gibbs free energy, relationships among thermodynamic Fundamental property relations, Maxwell's relations, Clapeyron equation, entropy-heat capac Effect of temperature on U, H & Entropy (S), relationships between Cp & Cv, Gibbs Helmhol Fugacity, fugacity coefficient, Determination of fugacity of pure gases, fugacity's of solids Activity and activity coefficient, Thermodynamic diagrams. Properties of solutions.	city relation, Itz equation.
UNIT-IV	10 Hrs.
Thermodynamic Properties of Pure Fluids Partial molar properties, Chemical potential, Gibbs-Duhem equation & its applications, He	
Raoult's law. Criteria of phase Equilibria, criterion of stability, Duhem's theorem, Vapour- Liquiv VLE in ideal solutions, Consistency test for VLE data, calculation of activity coefficients using Gib equation, Liquid-Liquid Equilibrium diagrams.	id Equilibria:
VLE in ideal solutions, Consistency test for VLE data, calculation of activity coefficients using Gib	id Equilibria: obs - Duhem

Course Outcomes**

June

After completion of the course student will be able to

1. Explain the fundamental concepts of the laws of thermodynamics and apply the first law of thermodynamics to solve engineering problems.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

- 2. Understand the second law of Thermodynamics and apply in engineering problems and solve the problems related to properties of fluids.
- 3. Estimate the thermodynamic properties, such as enthalpies, entropies, Gibbs energies, fugacity coefficients, and activity coefficients of pure fluids as well as fluid mixtures.
- 4. Analyze and find properties such as Pressure, Volume and Temperature for equations of states. Calculate entropy for the processes, and various types of energies such as internal energy, enthalpy, Helmholtz free energy and Gibbs free energy.
- 5. Predict equilibrium compositions of mixtures under phase.
- 6. Generate Vapor Liquid Equilibrium data for ideal and non-ideal solutions and check for their consistency by various methods.
- * Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes		Programme Outcomes (POs)											Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2	2	2	-	-	-	-	-	-	-	1	2	-	-	
CO2	2	2	3	3	-	-	-	-	-	-	-	1	2	-	-	
CO3	3	3	2	2	-	-	-	-	-	-	-	1	2	-	-	
CO4	2	2	2	3	-	-	-	-	-	-	-	1	2	-	-	
CO5	2	2	3	2	-	-	-	-	-	-	-	1	2	-	-	
CO6	3	3	2	3	-	-	I	-	-	-	-	1	2	-	-	

UBT408L

L: T: P – 0:0:3

MOLECULAR BIOLOGY LAB

Credits: 1.5

CIE Marks: 50 SEE Marks: 50

Total Hours/Week: 03

LIST OF EXPERIMENTS IN MOLECULAR BIOLOGY LABORATORY

- 1. Study of standard practices in Molecular Biology Lab
- 2. Standard Operating Procedure for Centrifuge.
- 3. Standard Operating Procedure for Gel Documentation Unit.
- 4. Study of absorption spectra of nucleic acids.
- 5. Agarose gel electrophoresis.
- 6. Isolation of genomic DNA (plant / animal / microbial sources).
- 7. Isolation of plasmid DNA from E. coli.
- 8. Estimation of DNA by diphenyl method.
- 9. Estimation of RNA by orcinol method.
- 10. Purity of nucleic acids, protein by UV-Vis Spectrophotometer.
- 11. PAGE (DEMO).

Reference Books *

1. Sadashiva and Manickam, (2017), Biochemical Methods, (2nd Edition), W.H. Freeman

2. Sambrook& Russell, (2002), Molecular Cloning, (3rd Edition), Cold Spring Harbor Lab.

Course Outcomes**

After completion of the course student will be able to

- 1. Analyze the concentration and purity of DNA.
- 2. Conduct and analyze Agarose gel electrophoresis.
- 3. Perform absorption spectra and understand SOP for various lab equipments.
- 4. Conduct observations and experiments including Genomic DNA/plasmid DNA /RNA/protein.
- 5. Demonstrate the knowledge of quantification and purity analysis of biomolecules.
- 6. Gain knowledge in demonstration of PAGE.

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)				gram Spe comes (PS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	1	3	1	-	-	-	-	-	1	2	1	-
CO2	1	2	2	1	3	2	-	-	-	-	-	1	2	2	-
CO3	1	2	2	1	3	1	-	-	-	-	-	1	1	1	-
CO4	2	2	3	2	3	2	-	-	-	-	-	1	2	2	-
CO5	1	2	3	1	3	1	-	-	-	-	-	1	3	3	-
CO6	1	1	3	2	3	1	-	-	-	-	-	1	3	3	-

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT410L

L: T: P - 0:0:2

Credit: 01

CIE Marks: 50 SEE Marks: 50

Total Hours/Week: 02

LIST OF EXPERIMENTS IN IMMUNOTECHNOLOGY LABORATORY

- 1. Agglutination Technique: Blood group identification and Rh factor
- 2. Laboratory diagnosis of diseases-Widal test (Tube agglutination) and VDRL
- 3. Ouchterlony Double Diffusion (ODD)
- 4. Radial Immunodiffusion (RID)
- 5. Countercurrent immunoelectrophoresis (CCIEP)
- 6. Rocket immunoelectrophoresis (RIEP)
- 7. Western blot (IGg Purification)
- 8. ELISA/ DOT Blot.
- 9. Quantitative precipitin assay (QPA).

Reference Books *

- 1. Roitts, (2017), Essential Immunology (13th edition), Wiley Blackwell
- 2. Kuby, J.(2019), Immunology (8th edition), W H Freeman publishers
- 3. Chakravarthy, A.K. (2006), Immunology & Immunotechnology, Oxford University Press
- 4. Rastogi, S. C. (2005), Immunodiagnostics (1st Edition), New Age International

Course Outcomes**

After completion of the course student will be able to

- 1. Understand Immune system.
- 2. Analyze the humoral and cell mediated immune system..
- 3. Explain the immunological disorders.
- 4. Evaluate the Transplantation immunology.
- 5. Understand the designing of Vaccines.
- 6. Understand Ag Ab reaction and applications of Electrophoresis in Immunology.

Course				Р	rogra	mme	e Out	come	s (PO	s)			-	ramme S tcomes (I	-
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3	3	2	-	-	-	-	2	-	-	-	3	-	1	3
CO 2	2	2	1	3	2	-	3	-	-	-	-	3	3	1	3
CO 3	3	1	1	-	2	2	3	1	-	-	-	3	1	1	2
CO 4	2	2	2	2	2	2	-	-	-	-	-	2	-	2	1
CO 5	3	1	2	-	2	-	1	1	-	-	-	2	1	-	2
CO 6	2	2	2	-	-	1	-	-	-	-	-	2	2	3	2

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT412L

L: T: P - 0:0:3

BIOSTATISTICS LAB

Credits: 1.5 CIEMarks:50 SEEMarks:50

Total Hours/Week: 03

LIST OF EXPERIMENTSIN BIOSTATISTICS LABORATORY

- 1. Procedure for creating Data file, Diagram and Graphs.
- 2. Procedure and calculation of Mean, Median, Mode, Standard Deviation and Variance.
- 3. Calculation of Regression and correlation
- 4. Procedure and calculation of t, Z and F test.
- 5. Calculation of Chi-square test.
- 6. ANOVA- one-way analysis
- 7. ANOVA- two-way analysis.
- 8. Experimental Research Design CRD- Analysis.
- 9. Experimental Research design RBD- Analysis.
- 10. Experimental Research design Latin square Design- Analysis.
- 11. Placket-Burman Design for media optimization.
- 12. Response Surface Methodology for media optimization.

Reference Books *

- 1. Khan and Khanum, (2008), Fundamentals of Biostatistics (3rd edition), Ukaaz Publication
- 2. Kapur J.N.(2001), Mathematical Models in Biology and Medicine(1st edition), New age international Pvt. Ltd.
- 3. Agarwal B.L. (2009), Basic statistics(5th edition), New age international Publishers
- 4. Rastogi V. B. (2006), Fundamentals of Biostatistics, Ane Books

Course Outcomes**

After completion of the course student will be able to

- 1. Draw graphs, charts, enter the data using statistical software tools
- 2. Calculate measures of dispersion and central tendency
- 3. Analyse the t, z and f test
- 4. Solve and analyze ANOVA
- 5. Know the different types of experimental designs with case studies
- 6. Aware of media optimization techniques using statistical designs

*Books to be listed as per the format with decreasing level of coverage of syllabus

Course					Prog	ramm	ne Out	tcome	S				-	amme Sp Outcomes	
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	1	3	-	-	-	-	-	-	1	2	2	1	1
CO 2	3	3	2	3	3	-	-	-	-	-	2	2	2	1	-
CO 3	2	3	3	2	2	2	-	-	-	-	-	3	2	1	-
CO 4	3	3	1	3	3	2	-	-	-	-	-	3	2	1	2
CO 5	2	3	1	3	3	-	-	-	-	-	1	2	2	1	1

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

_																
	CO 6	1	3	1	3	2	-	-	-	-	-	-	2	2	1	1

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

Jung

VI SEMESTER

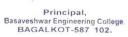
SI.	Subject Code	Subject Title		Hours/	Week		E>	aminat Marks	-
No.	Code		Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1	UBT615C	Enzyme kinetics and Biotransformation	3	3	0	0	50	50	100
2	UBT616C	Upstream Processing Technology	3	2	2	0	50	50	100
3	UBT617C	Bioprocess Equipment Design	3	2	2	0	50	50	100
4	UHS003N	Career Planning and Professional Skills	1	1	0	0	50	50	100
5	UBT62XE	Elective-2	3	3	0	0	50	50	100
6	UBT62XE	Elective-3	3	3	0	0	50	50	100
7	UBT632N	Environmental Technology (OE)	3	3	0	0	50	50	100
8	UHS004M	Universal Human Values-II	0	3	0	0	50	50	100
9	UBT615L	Bio-kinetics & Enzyme Technology Lab	1	0	0	2	50	50	100
10	UBT614L	Upstream Processing Lab	1	0	0	2	50	50	100
11	UBT609P	Mini Project	3	0	0	3	50	50	100
		Total	24	20	04	7	550	550	1100

Elective-2&3

UBT621E Microbial BT UBT623E Plant BT UBT625E Biofuels technology UBT627E Tissue engineering UBT622E Genomics & Proteomic UBT624E Animal BT UBT626E Pearl programming UBT628E Transport phenomena

UNIT-I	10 Hrs.
Enzyme action:	
Mechanism of enzyme action. Derivations of Km value (Michaelis-Menton constant), Linewe plot., Enzyme inhibition and kinetics	eaver-Burk
Multi-Substrate Reactions:	
Introduction to enzyme catalyzed reaction Ping-pong mechanism, Sequential mechanism (or	dered and
random), Enzyme models - Host guest complexation chemistry	
UNIT–II	10 Hrs.
 Enzymatic Techniques: Strategies of purification of enzymes: choice of source, methods of homogenization, Criteria of por purity, tests for catalytic activity, active site titrations, Molecular weight determine characterization of enzymes. Immobilization of enzymes: Techniques of enzyme immobilization; design and configuration of immobilized enzyme reactions immobilized enzymes, immobilized enzymes in bioconversion processes(uses). The design and configuration processes(uses). 	s,Kinetics of
UNIT-III	10 Hrs.
angiotensin converting enzyme (ACE), 5'- nucleotidase (5NT), glucose-6-phosphate dehydroger Use of isozymes as markers in cancer. UNIT–IV	nase (GPD).
Industrial uses of enzymes:	
Enzymes used in detergents, use of proteases, leather and wool industries; methods involved in of glucose syrup from starch (using starch hydrolyzing enzymes). Uses of lactase in dairy industriated oxidase and catalase in food industry. Uses of proteases in food industries.	•
Reference Books *	
 Trevor Palmer (2008). Enzymes: Biochemistry, Biotechnology, Clinical Chemistry. Horwood F Ltd, East-West Press, 2nd Edition. 	Publishing
 David L. Nelson and Michael Cox (2017). "Lehninger Principles of Biochemistry" –7th Edition. Nicholas C. Price and Lewis Stevens (2009). Fundamentals of Enzymology, Oxford university edition. 	Press, 3 rd
 James R Hanson (1997). "An Introduction to Biotransformation in Organic Chemistry" Oxford Press, 	university
 Daniel L. Purich, Melvin I. Simon, John N. Abelson (2009). Contemporary Enzyme Kin Mechanism" Academic press, 3rd edition. 	netics and
 K. Faber (1999). Biotransformations in Organic: Springer- Verlag.1st Edition,. Bailey and Ollis (2017). "Biochemical Engineering Fundamentals", Mcgraw Hill 2nd Ed. 	
Course Outcomes**	

ENZYME KINETICS AND BIOTRANSFORMATION


UBT615C L:T:P - 3:0:0

Total Hours/Week: 03

Credits: 03

CIE Marks: 50

SEE Marks: 50

After completion of the course student will have the

- 1. Ability to understand mechanism of enzyme reactions.
- 2. Ability to understand how to characterize the enzymes.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

- 3. Ability to apply the techniques of immobilization of enzymes and know its uses.
- 4. Ability to know the importance of enzymes in diagnostics.
- 5. Ability to know the application of enzymes in wool, leather and detergent industries.
- 6. Ability to apply knowledge of using enzymes in food industries.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)			-	gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	3	1	-	2		-	-	-	-	1	3	2	-
CO2	3	3	2	2	-	3	2	-	-	-	-	-	3	1	-
CO3	3	2	-	2	-	2	-	-	-	-	-	-	3	3	-
CO4	2	3	1	1	-	2	4	-	-	-	-	-	3	1	-
CO5	2	3	-	1	-	-	-	-	-	-	-	-	3	2	-
CO6	2	3	3	2		3	2			-	-	1	3	-	-

UBT616C

L:T:P - 3:0:0

Total Hours/Week: 03

UNIT-I

UNIT-II

UNIT-III

UNIT-IV

10 Hrs.

Fermentation process

Range of fermentation processes, chronological development of fermentation industry, component of the fermentation process. Basic functions of a fermenter for microbial, plant and animal cell culture. Body parts of fermentor, aseptic operation and containment. Sterilization of fermentors. Types of Fermentors, Classification of Fermentation Systems: Batch, fed batch and continuous process and their applications.

Scale Up: Process engineering concepts, engineering considerations, mechanical considerations, energy considerations. Process GMP considerations of scale up, operations and quality.

Raw materials and media sterilization

Media requirement for typical fermentation process, selection of typical raw materials, types of fermentation media. Preparation and handling of fermentation media, sterilization and its practical limits, Batch sterilization, Continuous sterilization and Filter sterilization.Different methods for optimization (Plackett-Burman Design, RSM)

Microbial system

Isolation of industrially important microorganisms, Strain development methods, Preservation of industrially important microorganisms. Development of inoculumfrom laboratory scale to pilot scale and large scale fermentation (for bacterial, yeast, mycelial processes). Criteria for the transfer of inoculum. Aseptic transfer of inoculum to the fermentor. Trouble shooting during fermentation process (microbial contamination). **Secondary metabolite production:** secondary metabolite production in bacteria, yeast and fungi. Production of lactic acid, butanol, antibiotics and enzymes.

Plant Cell system

Isolation and culture of single cells, Bioprocess using plant cell cultures. Bioreactors for suspension cultures, immobilized cells and organized tissues. Secondary metabolite enhancement techniques (alkaloids, steroids, phenolics).

Animal Cell system :

Scale up of animal cell culture, factors affecting cell culture, Batch reactors, continuous culture, and perfusion systems. Scale up of monolayer culture- roller bottles, nunc cell factory microcarriers culture. Growth monitoring.

Genetically engineered cells for bioprocessing; process, selection of host vectors, process constraints- genetic instability, mass transfer and others.

Large scale production of insulin by mammalian cell culture. Cellbank preparation & cell reviving techniques **Monoclonal antibody production:** SUDBRCS (Single use disposable bioreactor configuration, types of production (perfusion culture, submerged culture, suspended adhered culture).

Reference Books *

12 Hrs.

10 Hrs.

10 Hrs.

- 1. Principles of fermentation Technology by P.F. Stanbury and A. Whitaker, Butterworth-Heinemann; 3rd Edition,2016.
- 2. Bioprocess Engineering by Michael L. Shuler, Shuler & Kargi, Fikret Kargi, Pearson Publishers, 2nd Edition, 2012.
- 3. Plant Cell Culture: A Practical Approach by R.A. Dixon & Gonzales, IRL Press.2nd Edition, 1995.

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

- 4. Introduction to plant Biotechnology by H.S. Chawla, , Oxford & IBH Publishers, 3nd Edition, 2018.
- 5. Introduction to Plant tissue Culture, M.K. Razdan, Oxford & IBH Publishers, 3rd Edition, 2019
- 6. Culture of animal cells by Ian Freshney , John Willey & Sons Publ. 7th Edition.2016

Course Outcomes**

After completion of the course student will be able to

- 1. Understand the fermenter and fermentation processes
- 2. Prepare and sterilize the industrial media
- 3. Design and optimize the media formulation using design of experiments
- 4. Develop the inoculum and improve the strain for industrially important microorganism
- 5. Distinguish the bioreactors for various cell systems
- 6. Develop plant & animal system for fermentation process and to use the Genetically modified cell into the fermentation process

Course Outcomes				Pro	ogra	mme	Out	com	es (P	Os)			-	gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	-		2	-	1	-	-	-	-	1	3	2	-
CO2	3	3	-	3	-	-	2	-	-	-	-	1	2	-	-
CO3	3	3	-	3	3	-	2	-	-	-	-	3	-	2	-
CO4	3	3	-	3	-	-	2	-	-	-	-	3	-	1	-
CO5	3	3	-	3	3	-	2	-	-	-	-	3	-	2	-
CO6	3	3	-	3	-	-	2	-	-	-	-	3	-	1	-

UBT617C		Credits	s: 03
L:T:P -2:2:0	BIOPROCESS EQUIPMENT DESIGN	CIEMark	s:50
Total Hours/Week: 04		SEEMark	
	UNIT-I		10 Hrs.
Process design of double pipe	heat exchanger:		
difference (co-current, counter	nger, Functional design – Energy balance equatio er current), Heat transfer coefficients (inside, outsion er of tube. Pressure drop calculations. Detailed draw	de & overall), a	area, length,
	UNIT–II		10 Hrs.
Process design of shell & tube	e heat exchanger:		
number of tubes, tube shee thickness of shell, thickness of	er current), Heat transfer coefficients (inside, outside t diameter, pitch type, diameter of tube sheet. N f tube sheet, thickness of head, pressure drop calcula onal front view of Heat exchanger (1-1, 1-2) with tub	1echanical desi ations – tube si	gn – baffle, ide and shell
	UNIT–III		10 Hrs.
diameter. Mechanical design- flange calculations – width and Process design of plate colum Functional design- material k method, Mass transfer coeff	mines the volume of the reactor, according to H/D Thickness of the shell (cylindrical, spherical), thickned thickness of gasket, number of bolts, bolts circle dia UNIT–IV In distillation column: Dealance, energy balance, height of the packed colu icients, Diameter of columns (Top and bottom), to e design (showing clearly inlets, outlets liquid distribu	ess of top & bo ameter and bolt umn using McC op and bottom	ottom cover, diameter. 10 Hrs. abe Thiele's free space.
-	Reference Books *	· -	
 Brownell, L.E. and Your Inc.1959. Ludwig, E.E., Applied Pro Publishing Co. 1997. Indian Standards Instituti 5. Bhattacharya, B.C, Introd 	oment Design, Macmillan India, 1991. ng, E.H., Process Equipment Design - Vessel Design ocess Design for Chemical and Petrochemical Plants, ion, Code for Unfired Pressure Vessels, IS – 2825. luction to Chemical Equipment Design, CBS Publicatio ers Handbook. 7th Edition McGraw Hill Publications	Vol. 1 and 2, 3	
,			
	Course Outcomes**		

After completion of the course student will be able to

- 1. Understand the application of heat exchangers in industries and can describe the types of industrial heat exchangers
- 2. Solve problems related to heat exchangers referring the data book

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

- 3. Apply the knowledge of design concepts of double pipe heat exchanger and their parts in Engineering applications
- 4. Apply the knowledge of design concepts of shell & tube heat exchanger and their parts in Engineering applications
- 5. Apply the knowledge of different types of bioreactors and their design concepts in Industrial applications
- 6. Apply the knowledge of design concepts of distillation column and their parts in Industrial applications

*Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Prog	gram	me C	Dutco	omes	5 (PO	s)				gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	3	2	2	-	-	-	-	-	-	2	2	-	-
CO2	2	3	2	3	1	-	-	-	-	-	-	2	2	-	-
CO3	2	3	3	2	2	-	-	-	-	-	-	2	2	-	-
CO4	2	3	3	3	1	-	-	-	-	-	-	2	2	-	-
CO5	2	2	3	2		-	-	-	-	-	-	2	2	-	-
CO6	2	3	2	2	1	-	-	-	-	-	-	2	2	-	-

UBT621E		Credits: 03
L:T:P – 3:0:0	MICROBIAL BT	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

	10 Hrs.
f expressed pro	teins.
	10 Hrs.
unit vaccines, enzymes, stra	fragments of in -medium,
	10 Hrs.
erification & fo begradation, cla s microorganism	ermentation ssification of ns in mineral in (SCP) and
	10 Hrs.
ular sludge co	
	lation, cloning f f expressed pro- n of foreign gen eptics, antacids unit vaccines, enzymes, stra- processing, texti des - structure erification & f Degradation, cla s microorganism single cell prote

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

June

- 1. Fundamentals of Biotechnology. Edited by Paule Prave, Uwe Faust, Wolfgang Sitting and Dieter A Sukatsch. VCH Publishers.
- 2. Principles of fermentation Technology, P.F. Stanbury and A. Whitaker, Pergamon Press, 1984.
- 3. Alexander N Glazer, Hiroshi Nikaido by Microbial Biotechnology, W H Freeman & Company New York,2005
- 4. Bernard Davis & Renato Dulbecco Microbiology by, Lippincott Company, Philadelphia. 2000
- 5. Prit S J Principle of Microbe & Cell Cultivation, Blackwell Scientific co).1975

Course Outcomes**

After completion of the course student will be able to

- 1. Able to study about Genetic Transfer in bacteria cloning techniques.
- 2. Able to study industrial microbiology.
- 3. Able to study production & Biosynthesis microbial by products.
- 4. Able to know Uses of Bacteria in Bioremediation
- 5. Able to analyse microbial products.
- 6. Able to understand phytoremediation.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course				Pro	ogran	nme	Outco	omes					-	ramme Sp Outcomes	
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	2	2	-	-	2	2	2	-	-	-	-	1	1	1
CO 2	2	2	2	-	-	3	2	1	-	-	-	-	2	1	-
CO 3	3	3	2	-	2	2	2	1	-	-	-	1	1	1	-
CO 4	3	3	3	-	2	3	3	2	-	-	-	1	2	1	3
CO 5	2	2	2	-	2	2	3	1	-	-	-	1	2	1	2
CO 6	2	2	2	3	2	2	1	1	-	-	-	1	1	1	2

UBT623E		Credits: 03
L:T:P – 3:0:0	PLANT BT	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I

10 Hrs.

Plant genetic engineering

Induction of tumours by Agrobacterium, introduction of binary vectors into Agrobacterium by triparental mating, leaf disc transformation using Agrobacterium, GUS expression in transformed tissues, extraction of DNA from transformed plants, Southern hybridization to check plant

22 transformation, PCR amplification of T-DNA in transformed plant tissues. Agrobacterium mediated gene transfer and cloning. Types of plant vectors and their use in gene manipulation. Viruses as a tool to delivery foreign DNA.

Transformation technology

Plant transformation technology -Basis of tumor formation, hairy root, features of Ti and Ri plasmids, mechanisms of T-DNA transfer, role of virulence genes, use of Ti and Ri-plasmids as vectors, binary vectors. Vectorless or direct DNA transfer-particle bombardment, electroporation, microinjection, transformation of monoctos. Mechanism of transgene interaction - Transgene stability and gene silencing. Generation and mainteance of transgenic plants.

Applications

Application of plant transformation for productivity and performance – Herbicide resistance phosphoinothricin, glyphosate, atrazine, insect resistance -bt genes, Structure and function of Cry proteins – mechanism of action, critical evaluation of its impact in on insect control. Non-bt like protease inhibitors, alpha amylase inhibitor, virus resistance -coat protein mediated, nucleocapsid gene, disease resistance chitinase, 1-3 beta glucanase, RIP, antifungal proteins, thionins, RS proteins, abiotic stress – drought and salinity, post-harvest losses, long shelf life of fruits and flowers, use of ACC synthase, polygalacturanase, ACC oxidase, male sterile lines, barstar and barnase systems.

UNIT 3

UNIT-II

10 Hrs.

10 Hrs.

10 Hrs.

Secondary metabolites & gene markers

Metabolic engineering and industrial products -Plant secondary metabolites. Industrial enzymes, biodegradable plastics, polyhydroxybutyrate, antibodies, edible vaccines. Molecular marker-aided breeding -RFLP maps, linkage analysis, RAPD markers, STS, microsatellites, SCAR (sequence characterized amplified regions), SSCP (single strand conformational polymorphism), AFLP, QTL, map-based cloning, molecular marker assisted selection.

UNIT-IV

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

Nitrogen fixation

Nitrogen fixation and biofertilizers -Diazotrophic microorganisms, nitrogen fixation genes. Two component regulatory mechanisms. Transfer of nif genes to non-diazotrophic microorganisms, nod genes structure function and role in nodulation, Hydrogenase -Hydrogen metabolism. Genetic engineering of hydrogenase genes.

Algae

Blue-green algae and Azolla -Identification of elite species and mass production for practical application. Mycorrhizae -importance in agriculture and forestry. Algae as a source of food, feed, single cell protein, biofertilizers; industrial uses of algae. Mass cultivation of commercially valuable marine macroalgae for agar agar, alginates and other products of commerce and their uses. Mass cultivation of microalgae as a source of protein and feed. 6 Hour

Reference Books *

- 1. Dixon R.A. & Gonzales Plant Cell Culture: A Practical Approach by, IRL Press., 2008
- 2. Plant biotechnology in Agriculture by K. Lindsey and M.G.K. Jones (1990), Prentice hall, New Jersey, 2000
- 3. Plant Biotechnology 1994, Prakash and Perk, Oxford & IBH Publishers Co J Hammond, P
- 4. McGarvey and V Yusibov (Eds): Plant Biotechnology. Springer Verlag, 2000
- 5. Chawla HS: Biotechnology in Crop Improvement. Intl Book Distributing Company, 1998
- 6. Biodegradation and Detoxification of Environmental Pollutants Chakrabarthy AM RJ Henry:
- 7. Practical Application of Plant Molecular Biology. Chapman and Hall 1997
- 8. Plant Tissue Culture: Applications and Limitations by S.S. Bhojwani (1990), Elsevier, Amsterdam. TJ Fu, G Singh and WR Curtis (Eds):
- 9. Plant Cell and Tissue Culture for the Production of Food Ingredients. Kluwer Academic Press, 1999 PK Gupta:

Course Outcomes**

After completion of the course student will be able to

- 1. Study plant genetic engineering and transformation technology.
- 2. Study Application of plant transformation for productivity and performance
- 3. Study Metabolic engineering and industrial products.
- 4. Study nitrogen fixation and Identification of elite species and mass production for practical application of algae.
- 5. Analyse the growth and cultivation of Blue green Algae.
- 6. Identify various methods of plant transgenics

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	ograr	nme	Outco	omes					Programme Specific Outcomes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	2	1	2	-	-	-	-	-	-	-	-	-	3	1	1		
CO 2	2	2	2	3	2	-	-	-	-	-	-	-	3	1	-		
CO 3	3	2	2	-	2	-	-	-	-	-	-	1	3	1	-		
CO 4	3	2	3	-	2	-	-	-	-	-	-	1	3	1	1		
CO 5	2	2	2	-	2	-	-	-	-	-	-	1	3	1	-		
CO 6	2	2	2	3	2	-	-	-	-	-	-	1	1	1	-		

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT627E		Credit	:s:03
L:T:P – 3:0:0	TISSUE ENGINEERING	CIE Ma	rks: 50
Total Hours/Week: 03		SEE Ma	arks: 50
	UNIT-I		10 Hrs.
	uedevelopment and organization. Stem cells (e	embryonic), Ster	n cells (adult)
biology and biochemistry. Tiss Introduction to cell adhesion Measurement of Cell Adhesion, Characteristics of Mammalian	uedevelopment and organization. Stem cells (e Adhesion Receptors in Tissue Structures, Ce Effect of Biomaterial on Physiological Behavior. Cell Migration, Measurement of cell charact	embryonic), Sten ell Adhesion to Introduction to	n cells (adult) Biomaterials cell migration
biology and biochemistry. Tiss Introduction to cell adhesion Measurement of Cell Adhesion,	uedevelopment and organization. Stem cells (e Adhesion Receptors in Tissue Structures, Ce Effect of Biomaterial on Physiological Behavior. Cell Migration, Measurement of cell charact	embryonic), Sten ell Adhesion to Introduction to	n cells (adult) Biomaterials cell migration
biology and biochemistry. Tiss Introduction to cell adhesion Measurement of Cell Adhesion, Characteristics of Mammalian viability, cell-fateprocesses, cell Extracellular Matrix Introduction, ECM and Functi Adhesions, Focal Adhesions as Engineering Applications, Prope	uedevelopment and organization. Stem cells (e Adhesion Receptors in Tissue Structures, Ce Effect of Biomaterial on Physiological Behavior. Cell Migration, Measurement of cell charact motility, cell function.	embryonic), Stem ell Adhesion to Introduction to teristics morpho ement Membrar es,Sources of EC otifs, Summary c	n cells (adult) Biomaterials cell migration logy, number 10 Hrs. nes and Foca CM for Tissue of Functions o

hydrogels, Mechanical properties of biomaterials, Surface modification and characterization of polymers, Immune response to biomaterials, In vitro assessment/biocompatibility/protein adsorption. Polymeric scaffolds for tissue engineering applications.Drug delivery, Mechanisms of Drug Delivery, Protein-Drug Properties, Drug Delivery in Tissue Engineering.

10 Hrs.

UNIT–IV

Tissue Engineering Bioreactors - Design and Fabrication

Introduction, Most common Bioreactors inTissue Engineering, Cell Seeding in Bioreactors, Bioreactor Applications in Functional Tissues, DesignConsiderations, Challenges in Bioreactor\ Technologies.

Clinical & Regulatory Aspects of Engineered Tissues

Tissue Engineering of Skin, Bone Tissue Engineering, Cartilage Tissue Engineering, Neuronal, Tissue Engineering, Cardiovascular TissueEngineering, Musculoskeletal Tissue Engineering, (tendon/ligament/muscle).

Reference Books *

- 1. Channarayappa, Cell Biology, Universities Press, kindle Edition, 2010.
- 2. Robert Lanza Robert Langer Joseph Vacanti Anthony Atala Principles of Tissue Engineering Academic Press 5th Edition 2020.
- 3. Patrick CW, Mikos AG, McIntire LV, Frontiers in Tissue Engineering, Pergamon Press, 1st Edition, 1998.
- 4. Bernhard O Palsson, Sangeeta N Bhatia, Tissue Engineering, Pearson Prentice Hall.1st Edition 2003.

Course Outcomes**

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

After completion of the course student will be able to

- 1. Identify and differentiate between various stages of tissue development & stem cells.
- 2. Differentiate between various stages of tissue development & stem cells.
- 3. Analyze the mechanism and organization of ECM and its functions.
- 4. Apply the knowledge of drug delivery mechanism in therapeutics.
- 5. To strengthen the concept of protein drug interactions.
- 6. Integrate the knowledge of clinical and regulatory aspects on different engineered tissues in medical human tissue products and pharmaceutical sector

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course				Pro	ogran	nme	Outco	omes					-	Programme Specific Outcomes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO 1	2	1	2	-	-	-	-	-	-	-	-	-	3	1	1			
CO 2	2	2	2	3	2	-	-	-	-	-	-	-	3	1	-			
CO 3	3	2	2	-	2	-	-	-	-	-	-	1	3	1	-			
CO 4	3	2	3	-	2	-	-	-	-	-	-	1	3	1	1			
CO 5	2	2	2	-	2	-	-	-	-	-	-	1	3	1	-			
CO 6	2	2	2	3	2	-	-	-	-	-	-	1	1	1	-			

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT624E		Credits: 03
L:T:P – 3:0:0	ANIMAL BT	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I

UNIT-II

UNIT 3

10 Hrs.

10 Hrs.

10 Hrs.

Cell lines

Primary culture – Mechanical and enzymatic mode of desegregation, establishment of primary culture. Subculture -passage number, split ratio, seeding efficiency, criteria for subculture. Cell lines -definite and continuous cell lines, characterization, authentication, maintenance and preservation of cell lines. Contamination -bacterial, viral, fungal and mycoplasma contaminations, detection and control, cell transformation – normal vs. transformed cells, growth

Cell culture

Scale-up of animal cell culture – Factors to be considered. Scale-up of suspension cultures Batch reactor, continuous culture, perfusion systems. Scale-up of monolayer cultures – roller bottles, Nunc cell factory, microcarrier cultures, organotypic culture, matrices, factors affecting culture and perspectives.

Invitro fertilization & cloning

Conventional methods of animal improvement, predominantly selective breeding and crossbreeding. Embryo biotechniques for augumentation of reproductive efficiency and faster multiplication of superior germ plasm. Super ovulation Oestrus synchronization. Embryo collection, evaluation and transfer. Invitro maturation of oocytes. Invitro fertilisation and embryo culture. Embryo preservation. Micro manipulation and cloning. Artificial insemination, preparation of foster mother, surgical and non-surgical methods of embryo transfer, donor and recipient aftercare. Cloning -concept of nuclear transfer, nuclear reprogramming and creation of Dolly. Stem cells -embryonic and adult stem cells, plasticity and concept of regenerative medicine.

Human	genome

Human genome complexicity of the genome, outlines of human genome project, human disease genes. Molecular biological techniques for rapid diagnosis of genetic diseases. Chemical carcinogenesis, transfection, oncogenes and antioncogenes. Cryo preservation and transport of animal germ plasm (i.e. semen, ovum and embryos). Genetherapy -ex vivo and in vivo gene therapy methods, applications.

Transgenics

Transgenic animals -retroviral, microinjection, and engineered embryonic stem cell method of transgenesis. Application of transgenic animals -biopharming, disease models, functional knockouts.

UNIT–IV	10 Hrs.

Other applications

Application of animal cell culture -Vaccine production, specialized cell types. Concepts of tissue engineering skin, liver, kidney, bladder and heart. Principles and species suitable for aquaculture (Indian major carps and prawns). Genetic status of culture stocks. Chromosome manipulations -Production of all male and sterile populations, Hypophysation in fishes and prawns. Pearl culture -pearl producing mollusks, rearing of oysters, nucleation for pearl formation and harvesting of pearls. Probiotics and their significance in aquaculture. Molecular tools for the identification of diseases in aquatic species.

Reference Books *

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

- 1. Ian Fredhney. Culture of Animal Cells, (3rd Edn) R Wiley-Liss Animal Cell Biotechnology, Spier, RE and Griffith, JB Academic Press, London 1990
- 2. Animal Biotechnology by Murray Moo-Young (1989), Pergamon Press, 2000
- 3. Oxford Animal Cell Technology, Principles and practices, 1987, Butter, M Oxford press
- 4. Molecular Biotechnology by Primrose.
- 5. Methods in Cell Biology, Vol. 57, Animal Cell Culture Methods Ed. JP Mather and D Bames. Academic Press Fish and Fisheries India VG Jhingram
- 6. Living resources for Biotechnology, Animal cells by A. Doyle, R. Hay and B.E. Kirsop (1990), cambridge University Press, cambridge.
- 7. Animal Cell Culture Practical Approach, Ed. John RW. Masters, Oxford Animal
- 8. Cell Culture Techniques Ed Martin Clynes, Springer Cell Culture Lab Fax. Eds. M
- 9. Butler & MDawson, Bios Scientific Publications Ltd. Oxford

Course Outcomes**

After completion of the course student will be able to

- 1. Study cell lines and cell culture
- 2. Study Invitro fertilization & cloning.
- 3. Study human genome and Transgenic animals
- 4. Know Application of animal cell culture
- 5. Understand transgenic science
- 6. Understand and analyse cell culture applications.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course		Programme Outcomes										Programme Specific Outcomes					
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO 1	2	1	2	-	-	-	-	-	-	-	-	-	3	1	1		
CO 2	2	2	2	3	-	-	-	-	-	-	2	-	3	1	2		
CO 3	3	2	2	-	-	-	-	-	-	-	2	1	3	1	-		
CO 4	3	2	3	-	-	-	-	-	-	-	2	1	3	1	2		
CO 5	2	2	2	-	-	-	-	-	-	-	-	1	3	1	1		
CO 6	2	2	2	3	-	-	-	-	-	-	-	1	1	1	1		

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT626E		Credits: 03
L:T:P – 3:0:0	PERL PROGRAMMING	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I

10 Hrs.

Introduction

An overview of Perl: Getting started, interpreted vs compiled source code, documentation in perl, statement blocks, ASCII and Unicode, Escape sequences, whitespaces, numerical data type, strings in perl, alternative delimiters, conversion between numbers and strings, Arithmetical operators, bitwise operators, Boolean operators, string operators, string comparison, operator precedence, variables, modifying a variable, autoincrement and autodecrement operators, multiple assignments, scoping, special variables, regular expression variables, input/ output variables, filehandle / format variables, error variables and system variables variable interpolation .

Lists, Arrays and Hashes

Introduction to lists, simple lists, complex lists, accessing list values, list slices, ranges, combining ranges and slices, arrays, assigning arrays, scalar vs list context, adding elements to an array, accessing single and multiple elements from an array, running through arrays, array functions (pop, push, shift, unshift, and sort, Introduction to Hashes, creating a hash, working with hash values, adding, changing and taking values from a hash, accessing multiple values.

UNIT-II

UNIT 3

Loops and Decisions

Introduction, Changing Array Size, Interacting Over an Array by Reference, Extracting Unique Elements from a List, Computing Union, Intersection, or Difference of Unique Lists, Appending One Array to Another, Reversing an Array, Processing Multiple Elements of an Array, Finding All Elements in an Array Matching Certain Criteria, Sorting an Array Numerically

Regular Expression

Introduction to regular expressions, patterns, interpolation, escaping special characters, anchors, character classes, word boundaries, posix and Unicode classes, detecting repeating words, well defined repetition, back reference variables, match operator, substitution operator and transliteration operator, binding operators, meta characters, changing delimiters, modifiers, usage of split and join keywords, inline comments and modifiers, grouping and alternation, grouping with back references.

Files and References

Introduction to Filehandles, STDIN, STDOUT, STDERR file handles, reading lines, creating filters, line separator, reading paragraphs, reading entire files, writing to files, writing on a file handle, accessing filehandle, writing binary data, selecting a filehandle, buffering, file permissions, opening pipes, piping in, piping out, file tests, reading directories and globbing, introduction to references, lifecycle of a reference, anonymous reference, dereferencing, reference modification, array and hash referencing, reference counting and destruction.

Subroutines and Modules

Introduction to subroutines, difference between subroutines and modules, defining subroutines, order of declaration, subroutines for calculations, return values, caching, context, subroutine prototypes, scope, global variables, lexical variables, runtime scope, aliases, passing references, arrays, hashes and filehandles to a subroutine, modules, usage of keywords do, require and use, changing @INC, package hierarchies, exporters, standard modules in perl.

UNIT-IV

Principal,

10 Hrs.

10 Hrs.

10 Hrs.

Running and Debugging Perl

Examining syntax errors, runaway strings, brackets around conditions, missing semicolons, braces, commas

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

and barewords. Diagnostic modules, use warnings, scope of warnings, use strict, strict on variables, references, subroutines, use diagnostics, perl command line switches, usage of—e, -n, -p, -c, -I, -M, -s, -I, @INC, -a, -F and –T switches, Debugging techniques, usage of print, comments, context, scope and precedence in debugging, Defensive programming.

Bioperl

Overview, Bioperl Objects, Brief descriptions (Seq, PrimarySeq, LocatableSeq, RelSegment, LiveSeq, LargeSeq, RichSeq, SeqWithQuality, Seql), Location objects, Interface objects and implementation objects, Representing large sequences (LargeSeq), Representing changing sequences (LiveSeq), Using Bioperl: Accessing sequence data from local and remote databases, Accessing remote databases (Bio::DB::GenBank, etc), Indexing and accessing local databases Bio::Index::*, bp_index.pl, bp_fetch.pl, Bio::DB::*), Transforming sequence files (SeqIO), Transforming alignment files (AlignIO);

Reference Books *

- 1. Harshawardhan P Bal, Perl Programming for Bioinformatics, Tata McGraw Hill, 2003.
- 2. James Tisdall, Mastering Perl for Bioinformatics, O'Reilly, 1st Edition, 2003.
- 3. D. Curtis Jamison, Perl Programming for Bioinformatics & Biologists, John Wiley & Sons, INC., 2004
- 4. Michael Moorhouse, Paul Barry, Bioinformatics Biocomputing and Perl, Wiley, 1St Edition 2007.

Course Outcomes**

After completion of the course student will be able to

- 1. Study the over view of perl
- 2. Study about loops and decisions.
- 3. Study of regular expression paterns.
- 4. Study of files and references.
- 5. Understand the subroutines and modules.
- 6. Understand the concept of running and debugging perl.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable
--

Course				Pro	ogran	nme	Outco	omes					Programme Specif Outcomes						
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3				
CO 1	2	1	2	-	-	-	-	-	-	-	-	-	3	1	1				
CO 2	2	2	2	3	-	-	-	-	-	-	2	-	3	1	2				
CO 3	3	2	2	-	-	-	-	-	-	-	2	1	3	1	-				
CO 4	3	2	3	-	-	-	-	-	-	-	2	1	3	1	2				
CO 5	2	2	2	-	-	-	-	-	-	-	-	1	3	1	1				
CO 6	2	2	2	3	-	-	-	-	-	-	-	1	1	1	1				

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT628E		Credit	s: 03
L:T:P – 3:0:0	TRANSPORT PHENOMENA	CIE Ma	rks: 50
Total Hours/Week: 03		SEE Ma	rks: 50
			_
	UNIT-I		10 Hrs.
Momentum Transfer and Overa			
	ar transport equations for momentum, heat an		•
	s balance/continuity equation, energy balance		
	ity distribution in laminar flow, design equation for	or laminar and t	urbulent flow
n pipes. Momontum transfor – Principle	es and Applications: Flow past immersed objects,	nackod bods N	on-Nowtonia
-	continuity, momentum transfer (motion).	packed beds, N	
	UNIT-II		10 Hrs.
Steady State Heat Transfer			
-	onduction – through solids in series, steady state	conduction and	shape factor
Forced convection - heat tran	sfer inside pipes, natural convection heat transf	er, boiling and	condensatio
heat exchangers.			
•	Derivation of basic equation, simplified case for sy	stems with negl	igible intern
resistance.			
	· · · · · · · · ·		
	UNIT 3		10 Hrs.
Mass Transfer:			
Mass Transfer: Mass transfer and diffusion, 1	molecular diffusion in gases, liquids and solids.	Mass transfer	
Mass Transfer: Mass transfer and diffusion, 1	molecular diffusion in gases, liquids and solids. tion, Drying, Humidification, and Absorption.	Mass transfer	coefficients.
Mass Transfer: Mass transfer and diffusion, 1 Separation Processes - Evaporation	molecular diffusion in gases, liquids and solids.	Mass transfer	
Mass Transfer: Mass transfer and diffusion, I Separation Processes - Evaporat Separation Processes:	molecular diffusion in gases, liquids and solids. tion, Drying, Humidification, and Absorption. UNIT–IV		coefficients
Mass Transfer: Mass transfer and diffusion, i Separation Processes - Evaporat Separation Processes: Distillation, Adsorption, Ion Excl	molecular diffusion in gases, liquids and solids. tion, Drying, Humidification, and Absorption.		coefficients.
Mass Transfer: Mass transfer and diffusion, I Separation Processes - Evaporat Separation Processes: Distillation, Adsorption, Ion Excl Reference Books *	molecular diffusion in gases, liquids and solids. tion, Drying, Humidification, and Absorption. UNIT–IV hange, Leaching, Crystallization, Membrane proces	ses.	coefficients.
Mass Transfer: Mass transfer and diffusion, in Separation Processes - Evaporat Separation Processes: Distillation, Adsorption, Ion Excl Reference Books * 1. Transport Processes and S	molecular diffusion in gases, liquids and solids. tion, Drying, Humidification, and Absorption. UNIT–IV hange, Leaching, Crystallization, Membrane proces Separation Process Principles – C. J. Geankoplis, 4th	ses.	coefficients.
Mass Transfer: Mass transfer and diffusion, i Separation Processes - Evaporat Separation Processes: Distillation, Adsorption, Ion Excl Reference Books * 1. Transport Processes and S 2. Momentum, Heat and Ma	molecular diffusion in gases, liquids and solids. tion, Drying, Humidification, and Absorption. UNIT–IV hange, Leaching, Crystallization, Membrane proces Separation Process Principles – C. J. Geankoplis, 4th ass Transfer – Bennett and Myers	ses. n Edition	coefficients.
Mass Transfer: Mass transfer and diffusion, i Separation Processes - Evaporat Separation Processes: Distillation, Adsorption, Ion Excl Reference Books * 1. Transport Processes and S 2. Momentum, Heat and Ma	molecular diffusion in gases, liquids and solids. tion, Drying, Humidification, and Absorption. UNIT–IV hange, Leaching, Crystallization, Membrane proces Separation Process Principles – C. J. Geankoplis, 4th	ses. n Edition	coefficients.
Mass Transfer: Mass transfer and diffusion, in Separation Processes - Evaporat Separation Processes: Distillation, Adsorption, Ion Excl Reference Books * 1. Transport Processes and S 2. Momentum, Heat and Ma 3. Welty, Wicks and Wilson I	molecular diffusion in gases, liquids and solids. tion, Drying, Humidification, and Absorption. UNIT–IV hange, Leaching, Crystallization, Membrane proces Separation Process Principles – C. J. Geankoplis, 4th ass Transfer – Bennett and Myers	ses. n Edition	coefficients.
Mass Transfer: Mass transfer and diffusion, in Separation Processes - Evaporat Separation Processes: Distillation, Adsorption, Ion Excl Reference Books * 1. Transport Processes and S 2. Momentum, Heat and Ma 3. Welty, Wicks and Wilson I 4. Sawhney Gs Fundamenta	molecular diffusion in gases, liquids and solids. tion, Drying, Humidification, and Absorption. UNIT–IV hange, Leaching, Crystallization, Membrane proces Separation Process Principles – C. J. Geankoplis, 4th ass Transfer – Bennett and Myers Fundamentals of momentum, heat and mass trans	ses. n Edition	coefficients
Mass Transfer: Mass transfer and diffusion, in Separation Processes - Evaporat Separation Processes: Distillation, Adsorption, Ion Excl Reference Books * 1. Transport Processes and S 2. Momentum, Heat and Ma 3. Welty, Wicks and Wilson I 4. Sawhney Gs Fundamenta Course Outcomes**	molecular diffusion in gases, liquids and solids. tion, Drying, Humidification, and Absorption. UNIT–IV hange, Leaching, Crystallization, Membrane proces Separation Process Principles – C. J. Geankoplis, 4th ass Transfer – Bennett and Myers Fundamentals of momentum, heat and mass trans Is of Fluid Mechanics IK Publishers ,2008	ses. n Edition	coefficients
Mass Transfer: Mass transfer and diffusion, in Separation Processes - Evaporat Separation Processes: Distillation, Adsorption, Ion Excl Reference Books * 1. Transport Processes and S 2. Momentum, Heat and Ma 3. Welty, Wicks and Wilson I 4. Sawhney Gs Fundamenta Course Outcomes** After completion of the course	molecular diffusion in gases, liquids and solids. tion, Drying, Humidification, and Absorption. UNIT–IV hange, Leaching, Crystallization, Membrane proces Separation Process Principles – C. J. Geankoplis, 4th ass Transfer – Bennett and Myers Fundamentals of momentum, heat and mass trans Is of Fluid Mechanics IK Publishers ,2008	ses. n Edition	coefficients
Mass Transfer: Mass transfer and diffusion, in Separation Processes - Evaporat Separation Processes: Distillation, Adsorption, Ion Excl Reference Books * 1. Transport Processes and S 2. Momentum, Heat and Ma 3. Welty, Wicks and Wilson I 4. Sawhney Gs Fundamenta Course Outcomes** After completion of the course	molecular diffusion in gases, liquids and solids. tion, Drying, Humidification, and Absorption. UNIT–IV hange, Leaching, Crystallization, Membrane proces Separation Process Principles – C. J. Geankoplis, 4th ass Transfer – Bennett and Myers Fundamentals of momentum, heat and mass trans Is of Fluid Mechanics IK Publishers ,2008 e student will be able to sions and dimensional analysis	ses. n Edition	coefficients
Mass Transfer: Mass transfer and diffusion, in Separation Processes - Evaporat Separation Processes: Distillation, Adsorption, Ion Excl Reference Books * 1. Transport Processes and S 2. Momentum, Heat and Ma 3. Welty, Wicks and Wilson I 4. Sawhney Gs Fundamenta Course Outcomes** After completion of the course 1. Define the units, dimense	molecular diffusion in gases, liquids and solids. tion, Drying, Humidification, and Absorption. UNIT–IV hange, Leaching, Crystallization, Membrane proces Separation Process Principles – C. J. Geankoplis, 4th ass Transfer – Bennett and Myers Fundamentals of momentum, heat and mass trans Is of Fluid Mechanics IK Publishers ,2008 e student will be able to sions and dimensional analysis I analysis methods	ses. n Edition	coefficients
Mass Transfer: Mass transfer and diffusion, in Separation Processes - Evaporat Separation Processes: Distillation, Adsorption, Ion Excl Reference Books * 1. Transport Processes and S 2. Momentum, Heat and Ma 3. Welty, Wicks and Wilson I 4. Sawhney Gs Fundamenta Course Outcomes** After completion of the course 1. Define the units, dimensiona	molecular diffusion in gases, liquids and solids. tion, Drying, Humidification, and Absorption. UNIT–IV hange, Leaching, Crystallization, Membrane proces Separation Process Principles – C. J. Geankoplis, 4th ass Transfer – Bennett and Myers Fundamentals of momentum, heat and mass trans Is of Fluid Mechanics IK Publishers ,2008 e student will be able to sions and dimensional analysis I analysis methods cy and types of fluid	ses. n Edition	coefficients
Mass Transfer: Mass transfer and diffusion, in Separation Processes - Evaporat Separation Processes: Distillation, Adsorption, Ion Excl Reference Books * 1. Transport Processes and S 2. Momentum, Heat and Ma 3. Welty, Wicks and Wilson I 4. Sawhney Gs Fundamenta Course Outcomes** After completion of the course 1. Define the units, dimens 2. Analyze the dimensiona 3. Define the fluid, propert 4. Apply the Hydrostatic ar	molecular diffusion in gases, liquids and solids. tion, Drying, Humidification, and Absorption. UNIT–IV hange, Leaching, Crystallization, Membrane proces Separation Process Principles – C. J. Geankoplis, 4th ass Transfer – Bennett and Myers Fundamentals of momentum, heat and mass trans Is of Fluid Mechanics IK Publishers ,2008 e student will be able to sions and dimensional analysis I analysis methods cy and types of fluid	ses. n Edition fer,2000.	coefficients

hur

* Books to be listed as per the format with decreasing level of coverage of syllabus

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Course Outcomes		Programme Outcomes											Programme Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	2	-	-	-	1	-	-	-	-	-	3	1	-
CO 2	3	3	3	-	-	-	1	-	-	-	-	-	3	1	-
CO 3	2	3	2	-	-	-	1	-	-	-	-	-	3	1	-
CO 4	3	2	2	-	-	-	1	-	-	-	-	-	3	1	-
CO 5	2	3	3	-	-	-	1	-	-	-	-	-	2	1	-
CO 6	3	2	2	-	-	-	1	-	-	-	-	-	2	1	-

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

UBT622E	
L:T:P – 3:0:0	GENOMICS AND PROTEOMICS

Credits: 03 CIE Marks: 50 SEE Marks: 50

Total Hours/Week: 03

UNIT-I

10 Hrs.

10 Hrs.

10 Hrs.

Introduction

Genes and Proteins, Polymorphisms – types of polymorphism, commercializing the Genome - Revenue opportunities: a) genome sequences and database subscriptions, b) prediction of new genes and their function by databases, c) potential revenue in the area diagnostic and biomedical applications, d) biosimilars market and implications.

Sequencing & genome projects

Early sequencing efforts, Methods of preparing genomic DNA for sequencing, DNA sequence analysis methods, Sanger Dideoxy method, Fluorescence method, shotgun approach. Next generation sequencing Genome projects on *E.coli*, Arabidopsis and rice; Human genome project.

UNIT–II	10 Hrs.
Genomics	

Gene variation and Single Nucleotide Polymorphisms (SNPs), Expressed sequenced tags (ESTs), genotyping tools -DNA Chips, comparative genomics. Functional genomic studies with model systems such as Drosophila, Yeast or C. elegans.

Genome management in eukaryotes

Cell differentiation and gene regulation. Inheritance pattern in eukaryotes, Mutations, organization of eukaryotic genome within the nucleus, translation and post-translational modification in eukaryotes. Interference RNA, RNA silencing, SiRNA: Applications in Functional genomics, medicine and Gene Knockdown. Metagenomics- definition & concept.

UNIT 3

Functional genomics

Hargobhind Khorana discovery the first artificial gene, C-Value and paradox of genomes, Repetitive and coding sequences, Genetic and physical maps, chromosome walking. Molecular markers – RFLP, RAPD and AFLP, Microsatellites and telomerase as a molecular markers. Methods of molecular mapping, Marker assisted selection, map based cloning, T-DNA tagging, Transposon tagging. Bioinformatics analysis- clustering methods. Approaches to physical mapping, FISH – DNA amplification markers.

UNIT–IV	

Proteomics

Introduction to proteins, Methods of protein isolation, purification, quantification, Large scale preparation of proteins, use of peptides in biology, Proteomics databases and proteins as drugs.

Proteome analysis

Mass-spec based analysis of protein expression and post-translational modifications. "Protein Chip" - interactions and detection techniques. Methods of measurement of mRNA expression, DNA array hybridization Non-DNA array hybridization, two dimensional PAGE for proteome analysis, Applications of proteome analysis to drug development and toxicology. Crisper-cas.

Reference Books *

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

- 1. Introduction to Genomics Arthur M Lesk, Oxford University Press, 2007.
- 2. Plant Genome Analysis Peter M Gresshoff, CRC Press.
- 3. Genetic Analysis Principles, Scope and Objectives by JRS Finchman, Blackwell Science, 1994.
- 4. A M Campbell & L J Heyer Discovering Genomics, Proteomics & Bioinformatics–, Pearson Education, 2007.
- 5. Albala J S & I Humprey-Smith Protein Arrays, Biochips and Proteomics–CRC Press, 2003.
- 6. 3.Sabesan, Genomics & Proteomics , Ane Books, 2007.
- 7. Pennington S. R. and M J Dunn Proteomics –, 2004.
- 8. Richard J Simpson Purifying Proteins for Proteomics, IK International, 2004.
- 9. Richar.d J Simpson Proteins and Proteomics –, IK International, 2003.

Course Outcomes**

After completion of the course student will be able to

- 1. Ability to describe how genomic DNA contains long stretches non-coding regions.
- 2. Ability to describe how a single gene can give rise to multiple proteins.
- 3. Ability to harness the emerging genomic, transcriptomics and proteomics.
- 4. Ability to understand bioinformatics information to build novel paradigms of biological importance.
- 5. Ability to understand how modern genomics tools are useful in functional genomics.
- 6. Ability to understand the importance of proteomics in modern biology.
 - * Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes		Programme Outcomes											Programme Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	3	2	-	-	2	2	-	-	-	-	1	-	2	3
CO 2	3	3	1	-	-	2		-	-	-	-	2	1	-	3
CO 3	3	2	2	1	2	-		-	-	-	-	1	1	2	2
CO 4	2	2	2	2	2	2	2	2	-	-	-	1	1	2	2
CO 5	2	1	2	-	1	-	2	-	-	-	-	1	1	2	2
CO 6	3	1	2	2	2	1	-	-	-	-	-	1	1	2	2

UBT625E		Credits	5: 03	
L:T:P – 3:0:0	BIOFUELS TECHNOLOGY	CIE Mar	⁻ ks: 50	
Total Hours/Week: 03		SEE Ma	rks: 50	
	UNIT-I		10 Hrs.	
conversion of sugars to alcoho Biofuels Introduction to Biofuels - defi core and its different mode o	energy resources y conversion to chemical energy & carbon fixation ls. Renewable and non-renewable resources. inition, advantages and disadvantages. Biofuel life of f utilization. Conventional fuels and their environme cts. Biofuel energy content. World scenario of biofue	cycle. Biomass ental impacts. I	as an energy Vlodern fuels	
	UNIT-II		10 Hrs.	
stocks - forest residues, agric municipal solid waste and pa Animal fats. Next generation f Types of biofuels	ins, tubers & roots; Sugars feed stocks-sugarcane & cultural residues, Agricultural processing by-produc aper waste. Lipid feed stocks :-Oilseed crops with a feed stocks. Environmental impacts of feed stocks.	ts, dedicated e examples, Alga	nergy crops, e, Waste oil,	
	UNIT-III		12 Hrs.	
properties of bioethanol. Inn Innovations in Biodiesel produ AD technology and innovatio	nemical platform – bioethanol production, stand ovations in 2G technology. Thermochemical platfo actions, standardization, properties and emissions of ons in Biomethanation process. Biohydrogen proce Aicrobial fuel cells. Blending of biofuels.	rms - biodiese biodiesel. Bior	l production, nethanation-	
solid wastes to pipeline gas. IV	UNIT-IV		10 Hrs.	
Biofuels in perspective			10 115.	
Integrated refining concepts biodiesel, Issues with biofuel p		e change & food	d production.	
	Reference Books *			
 Fuels from Waste by La Biofuels by Ayhan Dem Biofuels (Series - Energy Biotechnology, Econo Cambridge Univ. Press, 	y For The Future And Global Warming) omic & Social Aspects: E.J. Dasilva, C Cambridge. nology by Pradipta Kumar Mahopatra, 2007.		A Sasson,	
	Course Outcomes**			
	Principal, Basaveshwar Engineering College, BAGALKOT-587 102.			

1. After completion of the course student will be able to

2. Ability to understand the basic principle involved in bioconversion process in energy and to

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

differentiate the conventional fuels with biofuels .

- 3. Able to diagnose the types of feed stocks used for biofuels.
- 4. Able to produce the biofuels (biodiesel, bioalcohol biogas and biohydrogen) using current technologies and innovations involved
- 5. Able to understand and recall current issues related with production and use of biofuels, Research opportunities, economic feasibility of the biofuels

Course		Programme Outcomes											Programme Specific Outcomes		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	2	-	-	2		1	-	-	-	-	1	3	2	-
CO 2	3	3	-	3			2	-	-	-	-	1	2	-	-
CO 3	3	3	-	3	3		2	-	-	-	-	3	-	2	-
CO 4	3	3	-	3			2	-	-	-	-	3	-	1	-
CO 5	3	3	-	3	3		2	-	-	-	-	3	-	2	-
CO 6	3	3	-	3			2	-	-	-	-	3	-	1	-

U	B	T	63	82	N	

L:T:P – 3:0:0

Total Hours/Week: 03

UNIT-I **10 Hours** Introduction: Current Environmental Issues and scope of Environmental science and technology biogeochemical role of soil microorganisms, Bioconcrete, Environment Impact Assessment **Bioaccumulation of toxicants** Characteristics of Xenobiotics, Relationship of Bioaccumulation with Chemical Structure, Ecophysiology of Bioaccumulation Process of toxicants uptake, Factors affecting bioaccumulation, measurement of bioaccumulation Sustainable future: Green building concept, Carbon foot print, crediting, trading and its calculation, Water foot print Rain water harvesting. UNIT-II 10 Hrs. Waste water treatment: Waste water characteristics BOD, COD, Primary & Secondary treatment, nanofiltration. ultrafiltration and microfiltration Microbial removal of phosphorous and Nitrogen Wastewater treatment of industries like sugar factories, food industries, beverages industries, and distilleries. Solid waste management Basic aspects, general composition of municipal solid wastes, aerobic treatment, anaerobic treatment biogas generation Solid waste management. Hazardous wastes, Biomedical Wastes E waste management, MoEF rules. UNIT-III 10 Hrs. Bioleaching & Biomining: Microbes in Bioleaching- types, methods of bioleaching, Microbial recovery of phosphate, petroleum. **Bioremediation:** Major contaminants of air, water and soil, Biomonitors of environment (Bioindicators), Bioremediation using microbes, Phytoremediation, Biofilms its applications Bio-stimulation of Naturally occurring microbial activities, Bio-augmentation UNIT-IV 10Hrs. **Biofuels:** Definition, Renewable and nonrenewable resources Advantages and disadvantages of biofuels Biofuel feed stocks-sugar starch, cellulose, lipid Types of biofuel- first, second and third generation Technologies for biofuel production-transesterification, gasification 2G technology, Biomethanation, Issues of biofuel production and its use. Microbial fuel cells. **Biodiversity:** Value of biodiversity, threats to biodiversity approaches of biodiversity conservation. **Reference Books *** 1. Pradipta Kum Mahopatra, 2006, Text Book of Environmental Biotechnology, I K Publishers. 2. R C Dubey and D K Maheshwari, 2013 Text book of Microbiology, 3. M Y Young ,2004 ,Comprehensive Biotechnology Vol 1-4 (Eds). Pergamon Press 4. EJ Dasilva, C Ratledge & A Sasson, 2003, Biotechnology, Economic & Social Aspects Cambridge Univ Press. 5. Indu Shekhar Thakur, 2012, Environmental Biotechnology Basic concepts and applications, Second Edition, I K international Publishing House, Pvt, Ltd.

Course Outcomes**

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

my

- 1. Able to analyse the current environmental issues, scope of environmental Technology and understand the various sustainable future concepts.
- 2. Able to analyse the methods used in treatment of waste water and solid waste.
- 3. Able to understand the concept of bioleaching process and biomining activity
- 4. Able to analyse the types and methods used in cleaning of the environment by bioremediation.
- 5. Able to define the sources of biofuels and produce various biofuels
- 6. Able to analyse the need of conservation of biodiversity

Course				Pro	gran	nme (Outco	omes	5 (POs	5)				gram Spe comes (P	
Outcomes	1	2 3 4 5 6 7 8 9 10 11 12											1	2	3
CO1	2	-	-	-	2	1	-	-	-	-	-	-	-	1	1
CO2	2	3	1	-	1	-	-	-	-	-	-	-	2	2	2
CO3	3	2	-	-	1	-	-	-	-	-	-	-	2	3	2
CO4	2	2	1	-	-	-	1	-	-	-	-	-	2	3	1
CO5	2	1	-	-	-	-	3	-	-	-	-	2	2	2	2
CO6	2	-	1	-	2	-	1	-	-	-	-	2	2	3	2

UBT615L		Credit: 01
L:T:P – 0:0:2	BIOKINETICS & ENZYME TECHNOLOGY LAB	CIE Marks: 50
Total Hours/Week: 02		SEE Marks: 50
LIST OF EXPER	IMENTS IN BIOKINETICS & ENZYME TECHNOLOGY LAI	BORATORY
1. Isolation of alpha-amy	lase from sweet potato or saliva	
2. Maltose calibration cu	rve by DNS method	
3. Determination of activ	ity of Salivary alpha-amylase	
4. Determination of Spec	ific activity of an enzyme	
5. Effect of pH and temp	erature on enzyme activity	
6. Determination of Kine	tics constants (Km & Vmax)	
7. Urea calibration curve		
8. Determine the activity	of enzyme Urease	
9. Effect of inhibitors on	enzyme activity	
10. Immobilization of enzy	me and determination of immobilized enzyme activity	ý
11. (Prediction of error pe	rcentage, standard deviation need to be calculated fro	om expt. no 5 and 6)
	Reference Books *	
 Laboratory manual of Bio 2017. 	chemistry by Pattabiraman, 4 th Edition, International	book publishers , India,
2. Sadasivam and Manickam	n, "Biochemical Methods", 2 nd Edition, New age intern	national Publishers, 2017.
	Course Outcomes**	
After completion of the cours 1. Understand the prepa 2. Determine the activity 3. Estimate the effect of	ration of enzymes.	

- 3. Estimate the effect of external condition on enzyme activity.
- 4. Evaluate the action of inhibitors on the enzyme activity.
- 5. Analyze the kinetic of enzymes.
- 6. Apply knowledge of immobilization of enzymes

Course Outcomes		Programme Outcomes (POs)											Program Specific Outcomes (PSOs)					
	1	L 2 3 4 5 6 7 8 9 10 11 12										12	1	2	3			
CO1	1	1	3	1	-	2		-	-	-	-	1	3	2	-			
CO2	3	3	2	2	-	3	2	-	-	-	-	-	3	1	-			
CO3	3	2	-	2	-	2	-	-	-	-	-	-	3	3	-			
CO4	2	3	1	1	-	2	4	-	-	-	-	-	3	1	-			
CO5	2	3	-	1	-	-	-	-	-	-	-	-	3	2	-			
CO6	2	3	3	2		3	2	-	-	-	-	1	3	-	-			

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

UBT614L											C	Credit: 01	
L:T:P – 0:0:2				UPST	REAN	1 PROC	ESSIN	G LAB	5		CIE	Marks: 5	0
Total Hours/Wee	k: 02									_	SEE	Marks: 5	0
	LIST OF	EXPE	RIME	NTS IN	UPST	REAM	PROC	ESSIN	G LABO	ORATO	RY		
1. Callus Induction	n Techni	ique-	- Stocl	k prepa	ratior	, Medi	a prep	aratio	on.				
2. Explants prepa	aration a	nd in	ocula	tion teo	hniqu	le.							
3. Development	of suspei	nsior	n cultu	ure from	n callu	IS							
4. Animal cell cul	ture tecł	nniqu	les										
5. Artificial seed	producti	on (A	Auxilia	iry buds	5)								
6. Production of	seconda	ry me	etabo	lite by s	hake	flask st	udies	; Com	parisor	n of yie	ld in vari	ous media	а
7. Fed batch cult	ure – Ass	sessn	nent c	of yield									
8. Development	of inocul	a; lag	g time	effect									
9. Study of opera	itional fu	nctic	ons of	the fer	ment	or							
10. Production of	.0. Production of Ethanol in fermentor – Study of Growth, product formation												
11. Kinetics and e	nd substi	rate i	utiliza	tion									
12. Single Cell Pro	tein (SCP) prc	oducti	on by c	ontin	uous cu	lture.						
				R	efere	nce Bo	oks *						
1. Plant Cell Cult	ure: A Pra	actic	al Apr	oroach l	ov R.A	A. Dixor	& Go	nzale	s. IRL P	ress.2 ^r	nd Edition	n. 1995	
2. Introduction t													3.
3. Culture of Ani												,	
4. Principles of fe									/hitake	er. Butt	erworth-	Heinemai	nn:
3 rd Edition, 20				07	,		,			,			,
, , , , , , , , , , , , , , , , , , ,				Co	ourse	Outco	nes**	k					
After completion of t	ho cour		udont										
1. Prepare/repro							5						
2. Produce callus		-											
3. Prepare the in	• •					•	rment	tation	proces	SS			
4. Operate lab f	ermente	r an	d pre	pare th	ie fer	menta	ion p	roces	s to st	udy gr	owth kin	netics, sub	ostrate
utilization and	•												
5. Record/observ		-				-							
6. Calculate the r	esult and	a to v	write	the con	clusic	on at th	e end	of the	e exper	iment			
											Pro	gram Spe	cific
Course Outcomes			Pr	rogram	me O	utcome	es (PO	s)				comes (P	
	1 2	3	4	5	6 7	7 8	9	10	11	12	1	2	3

Course Outcomes				FI	Ugra	mine		Outcomes (PSOs							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	-		2	-	1	-	-	-	-	1	3	2	-
CO2	3	3	-	3	-	-	2	-	-	-	-	1	2		-
CO3	3	3	-	3	3	-	2	-	-	-	-	3	-	2	-
CO4	3	3	-	3	-	-	2	-	-	-	-	3	-	1	-
CO5	3	3	-	3	3	-	2	-	-	-	-	3	-	2	-
CO6	3	3	-	3	-	-	2	-	-	-	-	3	-	1	-

Juny

VIII SEMESTER

SI. No.	Subject Code	Subject Title		H	ours/Week		Examination Marks					
			Credits	Lecture	Tutorial	Practical	CIE	SEE	Total			
1	UBT805P	Project	15	0	0	15	50	50	100			
2	UBT8XXE	Elective-6	3	3	0	0	50	50	100			
3	UBT8XXE	Elective-7	3	3	0	0	50	50	100			
		Total	21	6	0	15	150	150	300			

Elective-6

UBT823E: Chemical plant utilities & safety UBT824E: Metabolic engineering UBT825E: Industrial waste water treatment UBT827E: Pharmaceutical BT

Elective-7 UBT830E: Clinical research UBT832E: Health diagnostics UBT833E: Validation & quality control UBT834E: Product development

Credits: 03 CIE Marks: 50 SEE Marks: 50

Total Hours/Week: 03

UNIT-I

UNIT-II

UNIT-III

UNIT-IV

10 Hrs.

10 Hrs.

Introduction:

Introduction to pharmaceutical biotechnology, Pharmaceutical Industry. Drug design, development and Economics, Fundamental principles and processes involved in preclinical and clinical development of a chemical or biological entity. Orphan drugs Provisions for and use of unlicensed medicines, Drug abuse and dependence, Prescription and Non-prescription drugs. Regulations & guidelines for pharma ,CDSCO, fda, ichq7, usfdA21 cfr part11.

Drug metabolism:

Evolution of Drug Metabolism as a Science, Phase I Metabolism (microsomal oxidation, hydroxylation, dealkylation) Phase II Metabolism (Drug conjugation pathway). Pharmacodynamics and Pharmacokinetics of drugs.

Toxicology:

Basic concepts in toxicology, the mechanism of toxin action, biotransformation of toxins, their inactivation and removal from the body, Reactive intermediates.

Manufacturing principles and formulations:

Definitions, applications, composition, preparation, physicochemical considerations, Preformulation Testing, Tablets, compressed tablets, tablet granulation, Coatings, Pills, Parental preparations, herbal extracts, Oral liquids, Ointments, short study of current biotech products, herbal medicines. Quality control, storage and stability of biotech products.

Stem cells in health care:

Introduction to Stem Cell Biology, Fate Mapping of Stem Cells, Mesenchymal Stem Cells, Stem Cells and Neurogenesis and its application, Epidermal Stem Cells, Liver Stem Cells, Pancreatic Stem Cells, Stem Cells in the Epithelium of the Small Intestine and Colon. Application of epidermal stem cell in Tissue engineering, Hematopoietic Stem Cells, Classification and clinical manifestations of hematopoietic stem cell disorders.

Drug delivery system:

Advanced Sustained Release Drug Delivery System, Advanced drug Delivery Systems, Liposomes and Nanoparticles Drug Delivery System, Biodegradable Drug Delivery System, Hydrogel based Drug Delivery System.

Analysis of biologicals & pharmaceuticals:

Vitamins Cold remedies Laxatives Analgesics, NSAIO, External antiseptics, Antacids, Antibiotics, Biologicals, Herbal products. Packaging techniques – Glass containers, plastic containers, film wrapper, bottle seals.

Advanced pharmacology:

Introduction to pharmaceutical chemistry, classification of drugs based on therapeutic actions using suitable examples. Antineoplastic agents, Immunomodulators, Heavy metals and heavy metal antagonists, Therapeutic gases. Free radical biology and antioxidants.

Reference Books *

10 Hrs.

10 Hrs.

- 1. Gary Walsh, (2013), Biopharmaceuticals Biochemistry and Biotechnology (2nd Edition), Wiley Publishers.
- 2. Bartram Katzung, (2009), Basic & Clinical Pharmacology (9th Edition), McGraw Hill.
- 3. Leon Lachman, Herbert. Lieberman & Joseph Kanig, Vergese, (1987) The Theory & Practice of

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

Industrial Pharmacy, (3rd Edition) Publishing House Bombay.

Course Outcomes**

After completion of the course student will be able to

- 1. Apply and classify various biological sources of pharmaceutical products to retrieve the basic concept of pharmacology, drug metabolism .and their importance in biotechnology
- 2. Select and apply the toxicological studies of pharmaceutical products
- 3. Use knowledge of the techniques used in the manufacture of pharmaceutical products and apply in the field of Biopharmaceuticals.
- 4. Ability to discuss the concepts used in production of stem cells and analyse the applications and ethical issues of stem cells in the society.
- 5. Select and apply appropriate techniques advanced techniques in drug delivery system.
- 6. Demonstrate an ability to apply principles various other applications to protect the global community from various dreadful diseases.

Course Outcomes				Pro	ograi	nme	Out	come	es (P	Os)			-	gram Spe comes (P	
	1	1 2 3 4 5 6 7 8 9 10 11 12											1	2	3
CO1	-	2	2	2	3	3	1	-	-	-	-	-	3	2	1
CO2	-	3	3	3	3	2	3	-	-	-	-	-	2	2	1
CO3	-	2	3	2	З	1	-	1	1	-	-	-	3	2	-
CO4	-	2	3	2	З	1	-	1	1	-	-	-	2	2	-
CO5	-	3	3	2	3	1	-	I	1	-	-	-	2	3	-
CO6	-	3	3	3	3	2	2	-	-	-	-	-	2	2	3

UBT833E	
L:T:P – 3:0:0	

Total Hours/Week: 03

UNIT-I

6 Hours

Introduction

Validation and Regulatory Affairs in Bio (Pharmaceutical) Manufacturing: An Introduction to FDA Operations & Industry Compliance Regulations, The Fundamentals of Regulatory Compliance with respect to Good Clinical Practice (GCP), Good Manufacturing Practice (GMP) & Good Laboratory Practice (GLP). An Introduction to the Basic Concepts of Process Validation & Qualification (IQ, OQ & PQ) Procedures, A Review of Prospective, Concurrent, Retrospective Validation & Revalidation . Validation of Water, Active Pharmaceutical Ingredients (APIs) & Aseptic Processes. Validation of Non- Sterile Processes (used in the manufacture of Solids, Liquids, & Semisolid Dosage Forms). FDA and ICH guidelines.

					UNIT–II							7 Hrs.
Medical	Device,	In-Vitro	Diagnostics	&	Packaging	Validation	lssues,	Validation	of	Analyt	ical	Methods,
Compute	erized & A	Automate	ed Systems un	der	r 21 CFR Par	t 11.						

Standards

Introduction, ISO 9000 Series of Standards, Management Responsibility, Quality System, Contract Review, Design Control, Document and Data Control, Preservation and Delivery, Control of Quality Records, Internal Quality Audits, Training, Servicing, Statistical Techniques, ISO-9001-2000, Scope, Normative Reference, Terms and Definitions, Quality Management, System, Documents Requirements, Management's Responsibility, Resource Management, Infrastructure, Product Realization, Measurement, Analysis and Improvement, ISO-14001 - Environmental Management Systems.

Implementation	

UNIT–III

10 Hours

6Hrs.

The Influence of Good Automated Manufacturing Practice (GAMP); The FDA's Approach to GMP Inspections of Pharmaceutical Companies.

Quality System, Contract Review, Design Control, Document and Data Control, Purchasing,Control of Customer Supplied Product, Product Identification and Traceability, Process Control, Inspection and Testing, Final Inspection and Testing, Control of Inspection, Measuring and Test Equipment, Inspection and Test Status, Control of Nonconforming Product, Corrective and Preventive Action, Handling, Storage, Packaging, Preservation and Delivery, Control of Quality Records, Internal Quality Audits, Training, Servicing, Statistical Techniques.

Quality Objectives, Quality Planning, Quality Control, Quality Assurance, Quality Improvement

UNIT–IV	7Hrs.

Quality

Terminology Relating to Quality, Quality Requirement, Customer Satisfaction, Capability; Terms Relating to Management, Management System, Quality Management System, Quality Policy, Continual Improvement, Effectiveness, Efficiency; Relating to Process and Product, Process, Product, Procedure; Terms relating to Characteristics, Quality Characteristics; Terms Relating to Conformity, Non-Conformity, Defect, Preventive Action, Corrective Action, Correction, Rework, Regrade, Repair, Scrap, Concession, Deviation Permit, Release; Terms Relating to Documentation, Information, Document, Specification, Quality Manual, Quality Plan, Record; Terms Relating of Examination, Objective Evidence, Inspection, Test. Metrological Confirmation.

Reference Books *

- 1. Pharmaceutical Process Validation, 3rd Edition, Edited by Robert Nash and Alfred Wachter, Marcel Dekker, 2003
- 2. Good Manufacturing Practices for Pharmaceuticals: A Plan for Total Quality Control From

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Manufacturer to Consumer, Sidney J. Willig, Marcel Dekker, 5th Ed., 2000.

- 3. Validation of Pharmaceutical Processes: Sterile Products, Frederick J. Carlton (Ed.) and James Agalloco (Ed.), Marcel Dekker, 2nd Ed., 1998.
- 4. Validation Standard Operating Procedures: A Step by Step Guide for Achieving Compliance, 2017
- 5. Pharmaceutical, Medical Device, and Biotech Industries, Syed Imtiaz Haider, Saint Lucie, 2017
- 6. Pharmaceutical Equipment Validation: The Ultimate Qualification Handbook, Phillip A. Cloud, Interpharm Press, 1998.
- 7. Commissioning and Qualification, ISPE Pharmaceutical Engineering Baseline Guides Series, 2001

Course Outcomes**

- 1. Ability to comprehend the validation techniques, process, concepts.
- 2. Ability to analyse the good practices in lab, clinical and manufacturing practices
- 3. Capable of understanding the ISO standards and environmental management systems
- 4. Ability to analyse the analytical methods of validation, issues and automated system and standards
- 5. Ability to discuss the quality control measures used in industries
- 6. Ability to analyse the Quality Management System

Course Outcomes				Pro	ogra	mme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)		
	1	2 3 4 5 6 7 8 9 10 11 12										12	1	2	3
CO1	2	-	-	-	-	2	3	1	-	-	-	-	-	1	3
CO2	2	-	-	2	-	3	3	3	-	-	-	-	2	2	3
CO3	3	-	-	-	-	3	2	2	-	-	-	3	2	3	2
CO4	2	-	-	-	-	3	1	3	-	-	-	3	2	3	3
CO5	2	-	-	-	-	2	3	3	-	-	-	2	2	2	3
CO6	2		-	2	-	2	1	2	-	-	-	2	2	3	2

	U	B.	Т8	2	3E	
L:	Т	:P	-	3	:0	:0

Total Hours/Week: 03

UNIT-I

UNIT-II

10 Hours

Introduction

Different utilities. Role of utilities in process plant operations and criteria for selection and estimation of suitable utilities. Water: Water resources. Process water, Cooling water, drinking water and boiler feed water Quality Standards. Water treatment processes for drinking, process and boiler feed. Storage and handling of water. Types and selection of pumps, piping and accessories. Water pre treatment,

Air

Compressed air, blower air, fan air. Types of compressor and vacuum pumps and selection. Power requirements, performance and related calculations. Booster and receivers. Quality of compressed air for instruments and processes. Compressed air distribution system-piping and accessories. Air-water vapour system: humidification/ dehumidification and evaporative coolingrelated calculations.

10 Hrs.

Steam and power

Steam generation in chemical plants. Types of boilers and waste heat boilers. Fuels-types, emissions and global warming, green fuels. Calorific value. Proximate and ultimate analysis. HHV, LHV and related calculations. Cogeneration power plants. CHPs and Boiler performance. Related Calculations. Economy of steam generation with different fuels, related calculation. Steam storage and handling-piping and accessories.

Refrigeration:

Different refrigeration systems and their characteristics. Air-conditioning systems. Coefficient of performance. Power requirements and refrigeration effect-related calculations for each type of refrigeration system. Refrigerant properties and selection. Some commonly used refrigerants and secondary refrigerants.

			U	NIT–III						10 Hrs.
Insulation Insulation Properties & C Introduction			Selection sulation and fety: Int	l cryog	enic insu		insulation. Safety.	Insulat The H	0	factors. ards-Toxicity,
Flammability, methods. MSI	· ·	olosions.	Sources	of	ignition	, Pressu	ure. Hazard	and ri	sk	assessment
			U	NIT–IV						10 Hrs.
Safety devices	5									

Pressure relief valves. Ruptures discs. Blow down systems. Flare systems. Flame arrestors. Deflagration arrestors and explosion suppression. Personal safety devices.

Process safety analysis

HAZAN and HAZOP comparison. Risk analysis and estimation. Safety check list. Computer based quantitative risk analysis.

Reference Books *

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

- 1. Thermal Engineering, B.K. Sarkar, Tata Mc Graw Hill, 8th Reprint, 1998.
- 2. Heat Engines, K.P. Roy, Media Promoters and Publishers, 1995.
- 3. Chemical Engineers Handbook, Perry, 8th Edition, 2007.
- 4. Chemical Engineering-Vol 6, R.K. Sinnot, Coulson and Richardson's, 3rd Edition, BH, Reprint, 2000.

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

Course Outcomes**

- 1. Ability to Storage and handling of water
- 2. Able to understand types of compressor
- 3. Able to analyze the economy of steam generation with different fuels
- 4. Able to study Hazard and risk assessment methods.
- 5. Ability to understand safety devices
- 6. Ability to compare HAZAN and HAZOP operations

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				P	rogra	mme	e Out	come	es (PC)s)				gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	-		2	-	-	-	-	-	-	1	1	1
CO2	2	2	2	-	2	3	-	-	-	-	-	-	2	1	2
CO3	3	3	2	-	2	2	-	-	-	-	-	1	1	1	2
CO4	3	3	3	-	2	3	-	-	-	-	-	1	2	1	3
CO5	2	1	-	2	-	2	-	2	-	-	-	-	1	3	1
CO6	1	2	3	2	-	3	-	1	-	-	-	-	1	3	1

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UB1824E	
L:T:P – 3:0:0	METABOLIC ENGINEERING

Credits: 03 CIE Marks: 50 SEE Marks: 50

Total Hours/Week: 03

UNIT-I

UNIT-II

Introduction

Basic Concept of metabolic engineering overview of metabolism. Different models for cellular reactions, Mutation, mutagens mutation in metabolic studies.

Metabolic regulation

An overview of Cellular Metabolism, Transport Processes, Passive Transport, Facilitated Diffusion, Active Transport, Fueling Reactions, Glycolysis, ermentative Pathways, TCA Cycle and Oxidative Phosphorylation, Anaplerotic Pathways, atabolism of Fats, Organic Acids, and Amino Acids, Biosynthetic Reaction, iosynthesis of Amino Acids, Biosynthesis of Nucleic Acids, Fatty Acids, and Other Building Blocks, Polymerization, Growth Energetics

Metabolic flux

Metabolic flux analysis and its application, Methods for experimental determination of metabolic flux by isotope dilution method.

Applications of metabolic flux analysis

Amino Acid Production by Glutamic Acid Bacteria, Biochemistry and Regulation of Glutamic Acid Bacteria, Calculation of Theoretical Yields, Metabolic Flux Analysis of Lysine Biosynthetic Network in C. glutamicum, Metabolic Flux Analysis of Specific Deletion Mutants of C. Glutamicum, Metabolic Fluxes in Mammalian Cell Cultures. Determentation of Intracellular Fluxes.. Computational Networks and Systems Biology

UNIT-III	10 Hrs.
Regulation of metabolic pathways	
Regulation of Enzymptic Activity Overview of Enzyme Kinetics Simple Reversible Inhibiti	on Sustana

Regulation of Enzymatic Activity, Overview of Enzyme Kinetics, Simple Reversible Inhibition Systems, Irreversible Inhibition, Allosteric Enzymes: Cooperativity, Regulation of Enzyme Concentration, Control of Transcription Initiation, Control of Translation, Global Control: Regulation at the Whole Cell Level, Regulation of Metabolic Networks, Branch Point Classification, Coupled Reactions and the Role of Global Currency Metabolites.

UNIT-IV

Metabolic engineering in practice

Enhancement of Product Yield and Productivity, Ethanol, Amino Acids, Solvents, Extension of Substrate Range, Metabolic Engineering of Pentose Metabolism for Ethanol Production, Cellulose-Hemicellulose Depolymerization, Lactose and Whey Utilization, Sucrose Utilization, Starch Degrading Microorganisms, Extension of Product Spectrum and Novel Products, Antibiotics, Polyketides, Vitamins, Biopolymers, Biological Pigments, Hydrogen, Pentoses: Xylitol, Improvement of Cellular Properties, Alteration of Nitrogen Metabolism, Enhanced Oxygen Utilization, Prevention of Overflow Metabolism, Alteration of Substrate Uptake, Maintenance of Genetic Stability, Xenobiotic Degradation, Polychlorinated Biphenyls (PCBs), Benzene, Toluene, P-Xylene Mixtures (BTX).

Reference Books *

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

10 Hrs.

10 Hrs.

- 1. P.F. Stanbury and A. Whitkar. 2008, Principle of Fermentation Technology pergaman press,
- 2. Wang D I C Cooney C I Demain, A L ,2008, "Fermentation and enzyme Technology" John Willey,
- 3. Roberts, 2007 "Metabolism of Agrochemicals in Plants" Willey Int,.
- 4. David L. Nelson and Michael Cox, 2016, "Lehninger Principles of Biochemistry" –6th Edition
- 5. Lubert Stryer, 2010 "Biochemistry" Freeman & Co., Pub.

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

Course Outcomes**

- 1. Recall the concepts of cellular metabolism.
- 2. Explain the Basic concepts of metabolic engineering.
- 3. Explain Fundamentals of Metabolic flux analysis.
- 4. Apply the knowledge of metabolic flux analysis.
- 5. Apply the knowledge of regulatory mechanism for altering the metabolic pathways.
- 6. Design the metabolic pathways for desired product.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	ograr	nme	Out	come	es (P	Os)			-	gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	2	2			2							1	1	1
CO2	2	2	2		2	3							2	1	2
CO3	3	3	2		2	2						1	1	1	2
CO4	3	3	3		2	3						1	2	1	3
CO5	2	1		2		2		2					1	3	1
CO6	1	2	3	2		3		1					1	3	1

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT825E
L:T:P - 3:0:0

Total Hours/Week: 03

UNIT-I	10 Hours
Water and waste water engineering an overview Water quality, physical chemical and biological parameters of water, water quality standa indices. Waste water: terminology, impact of regulation on waste waterengineer environmental concern in waste water management, waste water characteristics and trea current status and future trends, waste water reclamation and reuse, biosolids and residu Constituents of waste water, physical chemical and biological parameters of waste water, sa waste water effluent standards, sewage disposal methods.	ing, health and atment methods, ual management.
UNIT–II	10 Hrs.
Screens, oil traps, grit chambers, coagulation, clariflocculation, oxidation ponds and lagoons, A biological treatment : Activated sludge process and its modifications, trickling filter, biological and denitrification, anaerobic process, sludge disposal. Advanced waste water treatment Removal of dissolved organic, inorganic constituents and biological constituents, Filtration: me backwashing for slow sand and rapid sand filters, adsorption principle and isotherms, gas strip exchange, advanced oxidation process. Membrane filtration	nitrification odeling and oping, ion
RO, UF, MF, NF, electrodialysis. Disinfection: chlorine dioxide, chloramines, ozonation, UV radi	
UNIT–III	10 Hrs.
Waste water reclamation and reuse Waste water reuse application, need for water reuse, public health and environmental issue introduction to risk assessment for water reuse, different reuse options: Agriculture and land industrial reuse, ground water recharge, non-potable uses with case studies. UNIT-IV	
	10 113.
Issues related to treatment plant performance Need for upgrading treatment plant performance, treatment process reliability and sele	ection of desigr
values, odour management, introduction to automatic process control, energy efficiency, water treatment plant performance by process optimization, important design consideratic water treatment plants: Liquid stream, solid processing, odour control.	upgrading waste
water treatment plant performance by process optimization, important design consideration	upgrading waste
 water treatment plant performance by process optimization, important design consideration water treatment plants: Liquid stream, solid processing, odour control. Reference Books * John C. Geyer and Daniel A Okun, Jhon Hutey, 1996. Water and Waste water engineerin M Fair. 	upgrading waste on for new waste ng-Vol 2, Gordon
 water treatment plant performance by process optimization, important design consideration water treatment plants: Liquid stream, solid processing, odour control. Reference Books * John C. Geyer and Daniel A Okun, Jhon Hutey, 1996. Water and Waste water engineering 	upgrading waste on for new waste ng-Vol 2, Gordon

- 1. Define water quality and explain methods to characterize water quality.
- 2. Describe water quality standards and their impact.
- 3. Explain primary and secondary treatment methods of waste water.
- 4. Apply membrane filtration techniques, and disinfection methods to purify waste water.
- 5. Analyze the importance of reclamation and reuse of waste water.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Course Outcomes					-	mme	Out	r	-	-				ram Spe omes (P	SOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	-	2	-	1	1	2	2	-	-	-	1	2	1	1
CO2	1	-	2	-	-	2	2	3	-	-	-	1	2	1	2
CO3	-	-	1	1	2	-	2	2	-	-	-	1	2	1	-
CO4	2	-	2	-	-	1	2	2	-	-	-	1	2	1	-
CO5	-	-	1	2	2	-	3	3	-	-	-	1	2	1	1
CO6	1	-	1	-	-	2	2	2	-	-	-	2	2	1	-

* Books to be listed as per the format with decreasing level of coverage of syllabus

UBT830E		Cre	edits: 03
L:T:P – 3:0:0	CLINICAL RESEARCH	CIE N	/larks: 50
Total Hours/Week: 03	-	SEE N	Marks: 50
			10 11
	UNIT-I		10 Hours
-	approaches, agonists, antagonists, enzym s for exploratory human investigation. In imal and human pharmacology.		•
Pre-clinical development to support formulations, manufacture and supp	rt testing in humans. Safety testing, I bly of materials, labeling and presentatic		=
Pre-clinical development to support	bly of materials, labeling and presentation		=
Pre-clinical development to suppor formulations, manufacture and supp compatibility, disposal; Concepts of P	bly of materials, labeling and presentation		=
Pre-clinical development to suppor formulations, manufacture and supp compatibility, disposal; Concepts of Pl Therapeutics Clinical importance of Therapeutic Interferon's, Interleukins and Addition Management of drugs Management of common acute and of drug effects Adverse drug react	bly of materials, labeling and presentation harmacovigilance. UNIT–II c Proteins, Antibodies, Enzymes; Horr	on, stability and mones and Gro uding biologicals fit and risk, Dru	storage, purity 10 Hrs. Dwth Factors, Measuremen
Pre-clinical development to suppor formulations, manufacture and supp compatibility, disposal; Concepts of Pl Therapeutics Clinical importance of Therapeutic Interferon's, Interleukins and Addition Management of drugs Management of common acute and of drug effects Adverse drug react Prescribing for particular populations	bly of materials, labeling and presentation harmacovigilance. UNIT–II c Proteins, Antibodies, Enzymes; Horr nal Regulatory Factors. chronic diseases. Major drug classes inclu- tions (short term & long term). Benef	on, stability and mones and Gro uding biologicals fit and risk, Dru	storage, purity 10 Hrs. Dwth Factors, Measuremer ug interactions

Healthcare marketplace

National and local formularies. Product information (Generic v/s Rx), advertising and claims Product support and promotion Product life-cycle management Product liability Codes of practice including the MHRA Blue Principles of health economics Pharmacoepidemiology Competition, in-licensing, co-marketing.

Social, ethical issues

patents and copyrights. Social-genetic discrimination: insurance and employment, human cloning, foeticide, sex determination. Ethical: somatic and germ line gene therapy, clinical trials, the right to information, ethics committee function. Preservation and clinical use of blood and blood components.

UNIT-IV

Clinical research

Types of Epidemiology study designs, ecological (correlation) studies, Case reports and case series, prevalence surveys or cross-sectional studies, case control studies, Clinical Trials, Small Clinical Trials, Placebo Responses in Clinical Trials, Large Clinical Trials and Registries – Clinical Research Institutes, Data **Management in Clinical Research:** General Principles and Guide to Sources, Clinical Research from Pharmaceutical Industry Perspective.

Reference Books *

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

10 Hrs.

- 1. Gary Walsh., Biochemistry and Biotechnology, 2002, John Wiley & Sons Ltd.
- 2. Gallin and . J. I. Ognibene F. P, 2007 Principles and Practice of Clinical Research by, 2nd Edition, Elsevier Publication.
- 3. William J. Williams, Ernest Beutler, Allan JU. Erslev, Marshall A. Lichtman, 2005, Hematology,
- 4. John Wiley & Sons Ltd by Arunabha Ray & Kavitha Gulati, 2007, Current Trends in Pharmacology IK Intl.

Course Outcomes**

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

- 1. Exploit the knowledge to know the clinical importance of different therapeutic products
- 2. An integrated understanding of the formulations, manufacturing and supply of materials
- 3. Ability to study the philosophy behind organization of research Ability to understand control measures uised in drug and its control
- 4. Ability to elucidate the marketing strategies of pharma products
- 5. Ability to compare the social and ethical issues
- 6. Ability to inculcate the epidemiology study designs, case reports and case series

 * Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	ograi	mme	Out	come	es (P	Os)			Progra Outco	am Spe mes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	1	3	3	-	2	-	2	1	-	-	-	2	2	2	1
CO2	1	2	3	-	1	-	2	1	-	-	-	3	3	1	1
CO3	1	2	3	-	2	-	2		-	-	-	3	2	2	1
CO4	1	3	3	-	1	-	1	1	-	-	-	2	2	1	1
CO5	1	3	3	-	-	-	-	-	-	-	-	1	2	3	
CO6	1	3	3	-	1	-	2	-	-	-	-	3	3	3	3

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

		Credits: 03
L:T:P – 3:0:0	HEALTH DIAGNOSTICS	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50
	UNIT-I	10 Hours
chromosomal disorders, single cell d chromosomal; karyotype analysis. DNA BASED DIAGNOSTICS G-banding, in <i>situ</i> hybridization (FISH cytogenetics: spectral karyotyping. DI blot diagnostics, array-based diagnos profiling, single nucleotide polymor degenerative disorders. Dynamic r autosomes of autosomal/sex chr	isorders, Infectious diseases, Parasitic dis disorders and complex traits. Chromosomal H and on-FISH), and comparative genomic, h NA diagnostics: PCR based diagnostics; ligatic stics, Genome sequencing and Metagenomics ophism. Haemoglobinopathies. Neuro develo mutations. G-banded chromosomal prepar comosomal disorders. (translocation, dele	disorders : autosomal; sea hybridization (CGH). Cance on chain reaction, Southern s, DNA sequencing, genetic opmental disorders. Neuro rations for detection o etion, Down's syndrome
appropriate probes) (e.g., chro 9-22 tr	ndrome, etc.) FISH for detections of: transl ranslocation; X-Y translocation).	ocations, inversions (using
	UNIT–II	10 Hrs.
LDL, Glycogen storage disorders, amvi	loidosis	doses, lipid profiles, HDL,
Cell based diagnostics		
Cell based diagnostics Antibody markers, CD Markers, FACS,		10 Hrs.
Cell based diagnostics Antibody markers, CD Markers, FACS, Immunodiagnostics Introduction, Antigen-Antibody React Amplification Systems, Separation a parasitic infections. Diagnosis of infe etc., bacterial diseases, enteric dise	HLA typing, Bioassays	10 Hrs. Juction, Enzymes and Signa ted to bacterial, viral and iza, etc.) Viral diseases-HIV
Amplification Systems, Separation a parasitic infections. Diagnosis of infe	HLA typing, Bioassays UNIT–III cions, Conjugation Techniques, Antibody Prod and Solid-Phase Systems, Case studies related ectious diseases, respiratory diseases (influen	10 Hrs. Juction, Enzymes and Signated to bacterial, viral and biza, etc.) Viral diseases-HIV

Course Outcomes**

June

- 1. Ability to study Biochemical disorders, chromosomal disorders.
- 2. Able to study DNA based diagnostics.
- 3. Analyse Biochemical diagnostics.
- 4. Understand cell based diagnostics.
- 5. Analyse Immunodiagnostics
- 6. Understand imaging diagnostics

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	ograi	nme	Out	come	es (P	Os)				gram Spe comes (PS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	-		2	-	-	-	-	-	-	1	1	1
CO2	2	2	2	-	2	3	-	-	-	-	-	-	2	1	2
CO3	3	3	2	-	2	2	-	-	-	-	-	1	1	1	2
CO4	3	3	3	-	2	3	-	-	-	-	-	1	2	1	3
CO5	1	3	3	-	-	-	-	-	-	-	-	1	2	3	
CO6	1	3	3	-	1	-	2	-	-	-	-	3	3	3	3

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

UBT834E		Credits: 03
L:T:P – 3:0:0	PRODUCT DEVELOPMENT	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50
	UNIT-I	12 Hours
Operating Procedure (SOPs), proces Stability studies – Stability Testing of Testing, storage conditions. Manuf	rivacy policies and Knowledge of basic labor s flows in manufacturing, product life cycl new Drug Substances and Products – types a facturing Process for Recombinant pharma ered cells- hormones and vaccines. Approved	e and competitor studies and stages of testing, Stress a Products. Production o
,,,,,,,	UNIT–II	10 Hrs.
anticipated reasons for the delay,	ues in Pharma industries. hts, company policies, delivery of quality wo effective interpersonal communication, con g, multi-tasking, training the team memb	flict-resolution techniques
	UNIT–III	10 Hrs.
-	· • ·	ars, sports drinks, fortified
	UNIT-IV	10 Hrs.
<i>,</i> , ,	th hazards, knowledge of chemical substanc ks, gloves and accessories, evacuation proc	,
visitors. Health, safety and security materials with pictorial symbols, Saf	y issues – types (illness, fire accidents). (fety in transportation of dangerous materia zardous substances.	Classification of dangerous
visitors. Health, safety and security materials with pictorial symbols, Saf pipelines. Safety in bulk storage of haz Reference Books *	fety in transportation of dangerous materia zardous substances.	Classification of dangerous
 visitors. Health, safety and security materials with pictorial symbols, Safety in bulk storage of haz Reference Books * Endrenyi, L., Declerck, D. and Che Biosimilar Drug Product Develop Biochemistry and Biotechnology Good Manufacturing Practices for Manufacturer to Consumer, Sidn 	fety in transportation of dangerous materia zardous substances. ow, S. (2017).	Classification of dangerous als by road, rail, ships and l. Introl From Spp.,

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

- 1. Understand, analyze and apply the techniques and essentials of product development and understand the various guidelines along with techniques in pharma industry
- 2. Demonstrate the different inter personnel skills and project management skills
- 3. Ability to comprehend various techniques involved in reporting, decision making process and understand adverse effects of drugs.
- 4. Describe the formulation of various energy drinks and demonstrate the role of Upstream and Downstream marketing.
- 5. Analyze and list the various health hazards in industry.
- 6. Ability to understand importance of safety and implement in various industries.
 - * Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	ograi	mme	Out	come	es (P	Os)				gram Spe comes (PS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	3	2	2	2	3	1	-	-	-	-	1	1	2	3
CO2	1	-	-	2	1	2	1	-	-	-	-	1	1	1	1
CO3	1	3	2	1	2	1	1	-	-	-	-	1	1	2	1
CO4	1	-	3	2	1	2	2	-	-	-	-	1	1	1	2
CO5	1	2	2	1	2	3	3	-	-	-	-	1	1	2	1
CO6	1	2	2	2	1	2	3	-	-	-	-	1	1	1	-

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE DEPARTMENT OF BIOTECHNOLOGY SCHEME OF TEACHING AND EXAMINATION

2021-2022

B.E. III SEMESTER

SI. No.	Subject Code	Subject Title		Но	ours/Week		Exa	minatio Marks	
INO.	Code		Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1	UMA392C	Numerical Techniques & Fourier Series	3	3	0	0	50	50	100
2	UBT305C	Biochemistry	3	3	0	0	50	50	100
3	UBT315C	Bioprocess Principles & Calculations	3	2	2	0	50	50	100
4	UBT312C	Unit Operations	3	3	0	0	50	50	100
5	UBT313C	Microbiology	3	3	0	0	50	50	100
6	UBT317C	Cytogenetics and Cell Culture Techniques	3	3	0	0	50	50	100
7	UBT307L	Biochemistry Lab	1.5	0	0	3	50	50	100
8	UBT308L	Microbiology Lab	1.5	0	0	3	50	50	100
9	UBT311L	Unit Operations Lab	1.0	0	0	2	50	50	100
10	UHS388C	Samskruthika Kannada	1	2	0	0	50	50	100
		Total	23	19	02	8	500	500	1000

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

UMA392C		Credits : 03
L:T:P - 3:0:0	NUMERICAL TECHNIQUES AND FOURIER SERIES	CIE Marks : 50
Total Hours /Week: 03		SEE Marks : 50
		1011
	UNIT – 1	10 Hrs.
Numerical Analysis-I:	n anglang Disection Mathed Neutra Dankaga	10 Hours
	ng problems, Bisection Method, Newton-Raphson	-
	ference operators (no derivations on relations be	. ,
difference interpolation form	ward interpolation formulae. (Without proof), Lagra	ange's and Newton's divided
	UNIT – 2	10 Hrs.
Numerical Analysis-II:		10 Hours
-	using Newton's forward and backward formulae	
	impson's three eighth rule and Weddle's rule (no	•
-	fied Euler's method, Runge-Kutta 4 th order method.	
•	UNIT – 3	10 Hrs.
Fourier series:		10 Hours
Periodic functions, Condition	ons for Fourier series expansions, Fourier series e	xpansion of continuous and
functions having finite nur	mber of discontinuities, even and odd functions.	Half-range series, practical
harmonic analysis.		
	UNIT – 4	10 Hrs.
Fourier transforms and z-tra	ansforms:	10 Hours
	and inverse Fourier transforms- simple properties, Fo	urier sine and Fourier cosine
property, damping rule, shift	sine and cosine transforms. Z-transforms-definition	urier sine and Fourier cosine
D.f Dl. *	sine and cosine transforms. Z-transforms-definition	urier sine and Fourier cosine
Reference Books *	sine and cosine transforms. Z-transforms-definition time rule-problems.	urier sine and Fourier cosine on, standard forms, linearity
1. Numerical Methods f	r sine and cosine transforms. Z-transforms-definition ting rule-problems. for Engineers by Steven C Chapra& Raymond P Canale	ourier sine and Fourier cosine on, standard forms, linearity
 Numerical Methods f Higher Engineering N 	r sine and cosine transforms. Z-transforms-definition ting rule-problems. for Engineers by Steven C Chapra& Raymond P Canale Mathematics by Dr. B.S. Grewal, Khanna Publishers, Ne	ourier sine and Fourier cosine on, standard forms, linearity e. e. ew Delhi.
 Numerical Methods f Higher Engineering N 	r sine and cosine transforms. Z-transforms-definition ting rule-problems. for Engineers by Steven C Chapra& Raymond P Canale	ourier sine and Fourier cosine on, standard forms, linearity e. e. ew Delhi.
 Numerical Methods f Higher Engineering M Advanced Engineering 	r sine and cosine transforms. Z-transforms-definition ting rule-problems. for Engineers by Steven C Chapra& Raymond P Canale Mathematics by Dr. B.S. Grewal, Khanna Publishers, Ne	ourier sine and Fourier cosine on, standard forms, linearity e. e. ew Delhi.
 Numerical Methods f Higher Engineering M Advanced Engineering 	r sine and cosine transforms. Z-transforms-definition ting rule-problems. for Engineers by Steven C Chapra& Raymond P Canale Mathematics by Dr. B.S. Grewal, Khanna Publishers, Ne ng Mathematics by H. K. Das, S. Chand & company Ltd	ourier sine and Fourier cosine on, standard forms, linearity e. e. ew Delhi.
 Numerical Methods f Higher Engineering N Advanced Engineerin Advanced Engineerin Course Outcomes ** 	r sine and cosine transforms. Z-transforms-definition ting rule-problems. for Engineers by Steven C Chapra& Raymond P Canale Mathematics by Dr. B.S. Grewal, Khanna Publishers, Ne ng Mathematics by H. K. Das, S. Chand & company Ltd ng Mathematics by E Kreyszig (John Wiley & Sons)	ourier sine and Fourier cosine on, standard forms, linearity e. e. ew Delhi.
 Numerical Methods f Higher Engineering M Advanced Engineerin Advanced Engineerin Advanced Engineerin 	r sine and cosine transforms. Z-transforms-definition ting rule-problems. for Engineers by Steven C Chapra& Raymond P Canale Mathematics by Dr. B.S. Grewal, Khanna Publishers, Ne ng Mathematics by H. K. Das, S. Chand & company Ltd ng Mathematics by E Kreyszig (John Wiley & Sons)	eurier sine and Fourier cosine on, standard forms, linearity e. ew Delhi. . Ram Nagar, New Delhi.
 Numerical Methods f Higher Engineering M Advanced Engineering Advanced Engineering Advanced Engineering Course Outcomes ** After completion of the course Solve engineering problem 	r sine and cosine transforms. Z-transforms-definition ting rule-problems. for Engineers by Steven C Chapra& Raymond P Canale Mathematics by Dr. B.S. Grewal, Khanna Publishers, Ne ng Mathematics by H. K. Das, S. Chand & company Ltd ng Mathematics by E Kreyszig (John Wiley & Sons) the students shall be able to, ms using non-linear equations and interpolation techn	eurier sine and Fourier cosine on, standard forms, linearity e. ew Delhi. . Ram Nagar, New Delhi.
 Numerical Methods f Higher Engineering N Advanced Engineerin Advanced Engineerin Advanced Engineerin Course Outcomes ** After completion of the course Solve engineering problem Solve problems using num 	r sine and cosine transforms. Z-transforms-definition ting rule-problems. for Engineers by Steven C Chapra& Raymond P Canale Mathematics by Dr. B.S. Grewal, Khanna Publishers, Ne ng Mathematics by H. K. Das, S. Chand & company Ltd ng Mathematics by E Kreyszig (John Wiley & Sons) the students shall be able to, ms using non-linear equations and interpolation techn nerical differentiation and numerical integration.	e. e. e. e. e. e. e. e. e. e. e. e. e. e
 Numerical Methods f Higher Engineering N Advanced Engineerin Advanced Engineerin Advanced Engineerin Course Outcomes ** After completion of the course Solve engineering problem Solve problems using num 	r sine and cosine transforms. Z-transforms-definition ting rule-problems. for Engineers by Steven C Chapra& Raymond P Canale Mathematics by Dr. B.S. Grewal, Khanna Publishers, Ne ng Mathematics by H. K. Das, S. Chand & company Ltd ng Mathematics by E Kreyszig (John Wiley & Sons) the students shall be able to, ms using non-linear equations and interpolation techn nerical differentiation and numerical integration. Il equations using numerical methods.	eurier sine and Fourier cosine on, standard forms, linearity e. ew Delhi. . Ram Nagar, New Delhi.

Course Outcomes				Pro	ograr	nme	Outo	come	s (PC	Ds)				ram Spec omes (PS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	_	-	-

June

CO3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Jung

	CO5	3	2	_	_	_	_	_	_	_	-		_	-				_		
	UBT305C	5		_		_	-	_		_							redi	ts: 03		
	L:T:P - 3:0:0	n					BI	осн	EMIS	TRY								ks: 50		
т	otal Hours/ We		;															rks: 5		
	•																			
						U	NIT-I	I										1	2 H	rs.
	iples of Bioener	-																		
Carb	gy Flow cycle, er ohydrate Metab	olism	:						•					-				·		-
Calvi	olysis, TCA cycle n Cycle, Glyo>				•					•	•		•			•			-	
-	oneogenesis. ders of carbohy	drato	mot	aholi	cm (Calar	toco	nmin	Lac	-	intolo	rar	200	Cluck		o ctor		dicor	da	oto
	ective enzyme le									lose	intole	lai	ice,	Giyco	oge	i stor	age	uisoi	uer	eit.
•	one formation to				-				•											
			- 1 -			•	NIT-I	II										1	LO H	Irs.
Lipid	Metabolism:																			
Biosy biode	nthesis of fatty a gradation of fat	tty aci	d, ket	tone	bodie	es pro	oduc	tion	-			-				ty aci	id bi	osynt	hes	is,
Disor	ders of lipid met	taboli	sm- S	phin	golipi															
	eic acid Metabo					UN	IIT–I											1	LO H	lrs.
novo purin	vnthesis of purin synthesis of pyr nes&pyrimidines eic acid metaboli	rimidiı . Recy	ne nu rcling	cleot of Pu	ides irine	- bios and F idron	syntł Pyrin	hesis nidin nd Go	of U ie nu	TP &	CTP.	Bio	degr	adat	ion	of		ders		Irc
		•				UN	1	v										-	.0 Г	irs.
Biosy Aspa and u Tyros	no Acid Metabol Inthesis of amine ragine, Methion Irea cycle.Disore Sinemia.	o acid ine, Ly	/sine,	, Thre	onin	e.Bio	degi	radat	tion o	of am	ino ao	cids	s- de	amin	atio	on, tra	insa	minat	ion	
Refere	ence Books *																			
1. 2.	David L. Nelsor Lubert Stryer (2											fBi	oche	emist	ry"	–6 th E	ditio	on.		
3.	Voet&Voet (20				-							/ Yc	ork P	ub.						
4.	Thomas M. Day	•			•					•					ss; 5	5 editi	on.			
5.	Mathews, Vanl	holde	& Arł	nen (2	2010)). "Bi	oche	emist	ry" -	3rd E	ditior	ι <i>,</i> Ρ	ears	on Ec	duca	ation	Pub	, 3 rd E	diti	on.
6.	K. Trehan (2003	•			•		-													
7.	Elliot & William	•												ub.						
8.	Helmreich JEM												•							
9. 10	U. Sathyanaray Berg J.M., Strye												~							
	. Berg J.M., Strye . Freifelder D (20				•	•			•					าท						
					5.01	-01				5410										
										1										

hur

Principal, Basaveshwar Engineering College. BAGALKOT-587–102.

June

After completion of the course student will have the

- 1. Ability to understand the principles of high energy compounds & interpret the metabolic pathways in the carbohydrates and their disorders
- 2. Ability to recognize the regulation of lipid metabolism along with the in born errors.
- 3. Ability to understand the origin of atoms in purine and pyrimidine & also interpret the pathways in the nucleic acid metabolism disorders
- 4. Ability to comprehend pathways involved in amino acid metabolism and its disorders

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Pro	ograr	nme	Outo	come	s (PO)s)			-	ram Spec omes (PS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	2	-		-	-	-	-	-	1	2	2	-
CO2	2	3	3	3	-	3	-	-	-	-	-	1	2	1	1
CO3	2	2	3	3	-	3	-	-	-	-	-	3	2	2	-
CO4	2	2	2	2	-	2	-	-	-	-	-	2	2	2	-

and unit operatio rsion of units from rerage molecular we alance without che aterial balance e , Extraction, Crys problems.	of traditional and modern a ons in chemical and bioproce of one system to another (I ad solutions- Percentage by veight; ppm, pH and pK Buffe UNIT–II emical reactions: equation for steady and u tallization, Drying, Mixing,	applications of biotech ess industries. Fundame FPS, CGS, MKS, SI).Con y weight, mole and we er calculations. Numerica unsteady states. Mater and Evaporation Oper and Evaporation Oper cess reactants, fractions lems. Material balances	ental and derived cept of mole and olume; Normality al problems rial balances in rations. Numerica and percentage involving bypass	10 Hrs. 10 Hrs. Ses. Process I quantities, d molecule, y, Molarity, 10 Hrs. Distillation, al problems 10 Hrs. 10 Hrs.
n & Basic Chemica nt and overview and unit operatio rsion of units from n of mixtures an rerage molecular w alance without che aterial balance e , Extraction, Crys problems.	I Calculations: of traditional and modern a ons in chemical and bioproce m one system to another (I ad solutions- Percentage by veight; ppm, pH and pK Buffe UNIT–II emical reactions: equation for steady and u tallization, Drying, Mixing, UNIT–III emical reactions: oefinitions of limiting and exc selectivity and related proble ations involving Excess air and	ess industries. Fundame FPS, CGS, MKS, SI).Con y weight, mole and ve er calculations. Numerica unsteady states. Mater and Evaporation Oper cess reactants, fractions lems. Material balances	nological process ental and derived cept of mole and olume; Normality al problems rial balances in rations. Numerica	10 Hrs. Ses. Process d quantities, d molecule, y, Molarity, 10 Hrs. Distillation, al problems 10 Hrs. conversion, s & recycle;
nt and overview and unit operatio rsion of units from n of mixtures an verage molecular w alance without che aterial balance e , Extraction, Crys problems. Ilance involving ch f Stoichiometry. D vercentage yield, s ombustion: calcula	I Calculations: of traditional and modern a ons in chemical and bioproce m one system to another (I ad solutions- Percentage by veight; ppm, pH and pK Buffe UNIT–II emical reactions: equation for steady and u tallization, Drying, Mixing, UNIT–III emical reactions: oefinitions of limiting and exc selectivity and related proble ations involving Excess air and	ess industries. Fundame FPS, CGS, MKS, SI).Con y weight, mole and ve er calculations. Numerica unsteady states. Mater and Evaporation Oper cess reactants, fractions lems. Material balances	ental and derived cept of mole and olume; Normality al problems rial balances in rations. Numerica and percentage involving bypass	ses. Process I quantities, d molecule, y, Molarity, 10 Hrs. Distillation, al problems 10 Hrs. conversion, s & recycle;
nt and overview and unit operatio rsion of units from n of mixtures an verage molecular w alance without che aterial balance e , Extraction, Crys problems. Ilance involving ch f Stoichiometry. D vercentage yield, s ombustion: calcula	I Calculations: of traditional and modern a ons in chemical and bioproce m one system to another (I ad solutions- Percentage by veight; ppm, pH and pK Buffe UNIT–II emical reactions: equation for steady and u tallization, Drying, Mixing, UNIT–III emical reactions: oefinitions of limiting and exc selectivity and related proble ations involving Excess air and	ess industries. Fundame FPS, CGS, MKS, SI).Con y weight, mole and ve er calculations. Numerica unsteady states. Mater and Evaporation Oper cess reactants, fractions lems. Material balances	ental and derived cept of mole and olume; Normality al problems rial balances in rations. Numerica and percentage involving bypass	ses. Process I quantities, d molecule, y, Molarity, 10 Hrs. Distillation, al problems 10 Hrs. conversion, s & recycle;
nt and overview and unit operatio rsion of units from n of mixtures an verage molecular w alance without che aterial balance e , Extraction, Crys problems. Ilance involving ch f Stoichiometry. D vercentage yield, s ombustion: calcula	of traditional and modern a ons in chemical and bioproce of one system to another (I and solutions- Percentage by veight; ppm, pH and pK Buffe UNIT–II emical reactions: equation for steady and u tallization, Drying, Mixing, UNIT–III pemical reactions: Definitions of limiting and exc selectivity and related proble ations involving Excess air and	ess industries. Fundame FPS, CGS, MKS, SI).Con y weight, mole and ve er calculations. Numerica unsteady states. Mater and Evaporation Oper cess reactants, fractions lems. Material balances	ental and derived cept of mole and olume; Normality al problems rial balances in rations. Numerica and percentage involving bypass	l quantities, d molecule, y, Molarity, 10 Hrs. Distillation, al problems 10 Hrs. conversion, s & recycle;
Ilance without che aterial balance e , Extraction, Crys problems. Ilance involving ch f Stoichiometry. D ercentage yield, s ombustion: calcula	UNIT–II emical reactions: equation for steady and u tallization, Drying, Mixing, UNIT–III emical reactions: Definitions of limiting and exc selectivity and related proble	unsteady states. Mater and Evaporation Oper cess reactants, fractions lems. Material balances	rial balances in rations. Numerica and percentage involving bypass	Distillation, al problems 10 Hrs. conversion, s & recycle;
aterial balance e , Extraction, Crys problems. Ilance involving ch f Stoichiometry. D ercentage yield, s ombustion: calcula	equation for steady and u tallization, Drying, Mixing, UNIT–III emical reactions: Definitions of limiting and exc selectivity and related proble	and Evaporation Oper cess reactants, fractions lems. Material balances	ations. Numerica	al problems 10 Hrs. conversion, s & recycle;
f Stoichiometry. D ercentage yield, s ombustion: calcula	emical reactions: Definitions of limiting and exc Selectivity and related proble ations involving Excess air and	lems. Material balances	involving bypass	conversion, s & recycle;
f Stoichiometry. D ercentage yield, s ombustion: calcula	pefinitions of limiting and exc selectivity and related proble ations involving Excess air and	lems. Material balances	involving bypass	s & recycle;
ince:				10 HIS.
ergy balance equ of heat capacity for eat of reaction, Sta re. Heat effects of b	ation for steady state. Ther or solids, liquids, gases and th andard heat of combustion a piochemical reactions. Nume	heir mixtures. Enthalpy, and calorific value, Calc	Standard Heat o	f formation,
ooks *				
Doran (2012) Biop nane K A (2009) Pro Shuler and F.Kargi of India Pvt Ltd. Iyanan K V, Lakshi	(2008) Bioprocess Engineer	s, 2nd Edition, Elsevier Ir etry, 2nd Edn, Nirali Pra ringbasic Concepts, 2n	ndia Pvt Ltd. kashan, India. Id Edn. Prentice-	n,
Himmelblau (2014	1) Basic Principles and Calcula	ations in Chemical Engin	eering, 8th Edn,	
ו S r	ane K A (2009) Pro huler and F.Kargi f India Pvt Ltd. yanan K V, Lakshi ndia.	ane K A (2009) Process Calculations Stoichiom Shuler and F.Kargi (2008) Bioprocess Engineer f India Pvt Ltd. yanan K V, Lakshmikutty B (2016) Stoichiome ndia.	ane K A (2009) Process Calculations Stoichiometry, 2nd Edn, Nirali Pra Shuler and F.Kargi (2008) Bioprocess Engineeringbasic Concepts, 2n f India Pvt Ltd. yanan K V, Lakshmikutty B (2016) Stoichiometry and Process Calcula India. Himmelblau (2014) Basic Principles and Calculations in Chemical Engin	ane K A (2009) Process Calculations Stoichiometry, 2nd Edn, Nirali Prakashan, India. Shuler and F.Kargi (2008) Bioprocess Engineeringbasic Concepts, 2nd Edn. Prentice- f India Pvt Ltd. yanan K V, Lakshmikutty B (2016) Stoichiometry and Process Calculations, 2nd Edition

- 1. Define the process operations and terms of calculations
- 2. Apply various types of unit systems and convert units from one system to another.
- 3. Develop strategy for solving problems involving gases, vapours etc.
- 4. Adopt the tools learned from the course to solve numerical problems which contain one or more unit operations.
- 5. Able to solve material balance problems involving reactions.
- 6. Develop mathematical relations for both mass and energy balances for different processes.
- * Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes				Prog	gram	me C	Outco	omes	s (PO	s)			-	ram Spec omes (PS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	2	2	2	1	1	-	-	-	-	-	-	-	3	-	-
CO 2	3	2	3	2	1	-	-	-	-	-	-	-	3	-	-
CO 3	2	3	2	2	1	-	-	-	-	-	-	-	3	-	-
CO 4	3	2	1	1	1	-	-	-	-	-	-	-	3	-	-
CO 5	2	3	3	1	1	-	-	-	-	-	-	_	2	-	-
CO 6	2	2	2	2	1	-	-	-	-	-	-	-	2	-	-

UBT312C		Credits: 03
L:T:P – 3:0:0	UNIT OPERATIONS	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

10 Hrs.

10 Hrs.

UNIT-I

UNIT-II

......

Introduction to Fluid Mechanics:

Units and Dimensions, Basic and Derived units, Dimensional homogeneity, Dimensionless numbers, Rayleigh method, Buckingham's pi theorem, Similitude. Fluid definition and classification (Types of fluids – Newtonian and Non Newtonian); Rheological behaviour of fluids. Fluid statics and its applications Hydrostatic equilibrium, Pressure measurement - Manometers.

Flow past Immersed Bodies:

Types of flow - laminar and Turbulent; Reynolds number; Basic equations of fluid flow - Continuity equation and Bernoulli equation; Correction for Bernoulli's equation, Pump work in Bernoulli's equation; Flow through circular and non-circular conduits – Friction factor relations for smooth and commercial pipes.

UNIT-III	10 Hrs.
Flow measurements:	
Orifice meter, Venturimeter, Rota meter. Pumps, principle, construction numerical. Major and minor losses, Centrifugal & Reciprocating pumps, Characteristics of centrifugal pumps. Pipes, fittings and valves.	
UNIT–IV	10 Hrs.

Mechanical Operations:

Types of filtration, Filter media and filter aids, calculation of resistances and rate of filtration, filtration equipment. Settling, Free and Hindered, Stoke's law, Newton's law, Terminal settling velocity, Batch sedimentation, Agitation: Theory of mixing, Power number calculations, mixing equipment. Flow patterns in agitated tanks, mechanism of mixing, scale up of mixing systems. Size Separation: Particle shape, size, screen analysis, screening equipment. Size Reduction: Characteristics of comminute products, crushing laws and work index; Size reduction equipment.

Reference Books *

- McCabe WL, Smith JC and Harriott (2005) Unit operations of Chemical Engineering, 7th Edn., McGraw-Hill Publications, USA.
- 2. Gavhane K. A (2012) Unit Operations I & II, 22nd Edn. Nirali Prakashan, India.
- 3. Alan S Foust, Wenzel LA, Clump CW, Maus L, and Anderson LB (2008) Principles of Unit Operations. 3rd Edn. John Wiley & Sons, USA.
- 4. R. P. Chhabra V. Shankar (2017) Coulson and Richardson's Chemical Engineering Volume 1A: Fluid Flow: Fundamentals and Applications. 7th Edition, Elsevier, USA.
- 5. R.P. Chhabra Basavaraj Gurappa (2019) Coulson and Richardson's Chemical Engineering Volume 2A: Particulate Systems and Particle Technology. 6th Edition, Elsevier, USA.

After completion of the course student will be able to

- 1. Understand the basic concept of fluid mechanics and flow measurements.
- 2. Predict the dimensional analysis and solution for fluid flow problems.
- 3. Predict the pressure drop in fluid flow and flow through packed beds.
- 4. Estimate the flow rate of fluids and design the pumps for transportation of fluids.
- 5. Analyse and solve the problems on filtration and settling.
- 6. Analyse the forces involved in flow through solids and its operations
- * Books to be listed as per the format with decreasing level of coverage of syllabus
- ** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Prog	gram	me (Dutco	omes	5 (PO	s)			-	gram Specific comes (PSOs)		
	1	1 2 3 4 5 6 7 8 9 10 11 12												2	3	
CO 1	2	2	2	1	1	-	-	-	-	-	-	-	3	-	-	
CO 2	3	2	3	2	1	-	-	-	-	-	-	-	3	-	-	
CO 3	2	3	2	2	1	-	-	-	-	-	-	-	3	-	-	
CO 4	3	2	1	1	1	-	-	-	-	-	-	-	3	-	-	
CO 5	2	3	3	1	1	-	-	-	-	-	-	-	2	-	-	
CO 6	2	2	2	2	1	-	-	-	-	-	-	-	2	-	-	

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT313C		Credits: 03		
L:T:P – 3:0:0	MICROBIOLOGY	CIE Marks: 50		
Total Hours/Week: 03		SEE Marks: 50		
	UNIT-I	10 Hours		
development of microbiology. Microb Microscopy:	nicrobiology-Evolution of microbes. Contribu pial diversity & taxonomy, Prokaryotes & Euka field microscopy, Dark-Field Microscopy, Pl n microscopy (SEM & TEM).	aryotes.		
	UNIT-II	10 Hrs.		
growth (continuous and batch). Vir reproduction. Fastidious microorganis	ure of Bacteria, Culturing of bacteria, Types uses, fungi, algae, protozoa, actinomycetes ms. Microbial toxins. iques- Aerobic and Anaerobic culture techn	s- structure and modes		
	UNIT–III	10 Hrs.		
and Phage biotics. Medical Microbiology:	l methods and chemical methods, antibiotics by microbes-pathogenesis, symptoms, diagno ars, Dengue, hepatitis, Cholera)	Normal		
	UNIT-IV	12 Hrs.		
bioremediation and biocontrol agents Industrial Microbiology: Microbial p cheese), Microbes as source of pr	quatic Microbiology, Biofertilizer, Plant processes using yeasts and bacteria (prod rotein (SCP), gelatin agents (alginate, xan es (amylase, protease), Useful products f	uction of alcohol, vineg thin, agar agar) Microb		
Reference Books *				
 Tortora, Funke and Case, 2006, E Alcamo I 2001. "Fundamenta Prescott, Harley & Klein, 2008, 	010 "Microbiology"- 5 th Edition Tata Macgra "Microbiology an Introduction" -8 th Edition, I Is of Microbiology"6th Ed, Jones & Bartlet, Pu "Microbiology" -7th Edition, WCB/McGraw H strial Microbiology"-Agribios India.	Pearson Education. ıb.		
Course Outcomes**				

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

hur

- 1. Ability to know the basic concepts of Microbiology, scope ,organization
- 2. Ability to analyze the techniques to study microorganisms through microscopy
- 3. Ability to analyze the structure of different microbes and interpret the techniques used to grow and identify the microbes

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

- 4. Ability to discuss the causative organisms of the disease and their effect on society
- 5. Ability to comprehend the applications in the industry and their use in society
- 6. Ability to analyse the applied techniques in the environment and create awareness to society

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Pro		Program Specific Outcomes (PSOs)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	2	-	-	2	-	-	-	-	-	-	1	1	1
CO2	2	2	2	-	2	3	-	-	-	-	-	-	2	1	2
CO3	3	3	2	-	2	2	-	-	-	-	-	1	1	1	2
CO4	3	3	3	-	2	3	-	-	-	-	-	1	2	1	3
CO5	2	2	1	-	2	1	-	-	-	-	-	2	1	1	1
CO6	2	2	1	-	3	1	-	-	-	-	-	2	2	1	3

UBT317C	CYTOGENETICS AND CELL CULTURE	Credits: 03		
L:T:P – 3:0:0	TECHNIQUES	CIE Marks: 50		
Total Hours/Week: 03		SEE Marks: 50		

UNIT-I 10 Hours Cell cycle and its regulation:

Cell & cell organelles, chromosome structure and its organisation, Cell division-mitosis and meiosis & their significance, (gametogenesis) cell cycle: check points, cell cycle and Regulation, factors regulating M phase initiation, M phase kinase, activation and inactivation.

UNIT-II

UNIT-III

UNIT-IV

Introductory genetics:

Mendel's laws of inheritance, Gene interactions-complete, incomplete, supplementary, complimentary, epistasis-inhibitory. Multiple allelism, Linkage, recombination and chromosomal mapping. Sex linked inheritance and extra chromosomal inheritance.

Plant cell culture

History and Introduction, requirements, lab organisation, media constituents, choice of media sterilization of media, explant selection, sterilisation and preparation for inoculation, role of growth hormones in cell culture. Cellular totipotency, cytodifferentition, organogenic differentiation, embryogenesis. Plant growth factors and hormones - auxins, gibberlins, cytokines and others. Stoichometry of cell growth and product formation.

Culture techniques and applications, cell and organ culture, protoplast culture, somatic hybridization, haploid production, micro propagation: somaclonal variation Regeneration of plantlets-shooting, rooting and hardening, synthetic seeds.

Animal cell culture Techniques:

History and development of mammalian cell culture. Lab organization, Introduction to balanced salt solutions. Cell culture media (Natural and Artificial) - components of the medium, functions of media components. Role of antibiotics in media. Cell lines – Mechanical and enzymatic mode of desegregation, establishment of primary culture. Subculture - passage number, split ratio, seeding efficiency, criteria for subculture. Cell lines -definite and continuous cell lines. Measurement of cell number Haemocytometer and coulter counter.

Cell line Characterisation and Maintenance:

Measurement of Cell viability and Cytotoxicity. Dye exclusion and inclusion tests, clonogenic assay, and MTT, PDT. Characterization, maintenance and preservation of cell lines (cryopreservation). Cell line contaminations, detection and control, cell transformation – normal v/s. Transformed cells, growth characteristics of transformed cells. In Vitro Fertilization (IVF) and Embryo Transfer Technique (ETT). Embryo splitting. Diagnosis of genetic diseases.

Reference Books *

10 Hrs.

10 Hrs.

12 Hrs.

- 1. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts and Peter Walter Molecular biology of The Cell, GS pub, 2002.
- 2. Culture of Animal cells-3rd Edition-R.Ian Freshney.Wiley Less 2010.
- 3. Rastogi S C "Cell Biology" New Age International Pub. 2005.
- 4. Powar C.B., "Cell Biology", Himalaya Pub. 2006.
- 5. Channarayappa, Cell biology, Universities Press, 2010.
- 6. Gardener, Simmons and Snustad, "Principles of Genetics" John Willey Publisher, 2003

- 7. Singh B.D, "Fundamentals of Genetics", Kalyani Pub, 2010.
- 8. Biotech Expanding Horizons-B. D. Singh, Kalyani Publishers, 2010.
- 9. Introduction to Plant biotechnology by H. S. Chawla, 2nd Edition, Oxford and IBH Publishers, 2010

Student will be

- 1. Able to understand the chromosome structure, cell cycle regulation and Mendalian genetics.
- 2. Able to use the plant cells to produce in vitro cultures
- 3. Able to apply the tissue culture techniques in various applications
- 4. Able to acquire working knowledge of culture of animal cells in *in vitro* conditions.
- 5. Able to identify, describe and classify the contaminants of cell culture and cryopreservation techniques
- 6. Able to identify the various applications of cell culture techniques

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course					P	rogram	me Oı	utcom	es				_	Programme Specific Outcomes			
Outcomes	1 2 3 4 5 6 7 8 9 10 11									11	12	1	2	3			
CO 1	2	-	-	-	3	1	-	-	-	-	-	-	1	2	-		
CO 2	2	-	-	-	3	1	-	-	-	-	-	-	2	2	-		
CO 3	2	-	-	-	3	1	-	-	-	-	-	-	1	2	-		
CO 4	2	-	-	-	3	1	-	-	-	-	-	-	2	2	-		
CO 5	2	-	-	-	3	1	-	-	-	-	-	-	1	2	-		
CO 6	2	-	-	-	3	1	-	-	-	-	-	-	2	2	-		

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT307L

Credits: 1.5

CIE Marks: 50 SEE Marks: 50

L:T:P – 0:0:3 Total Hours/Week: 03

LIST OF EXPERIMENTS IN BIOCHEMISTRY LABORATORY

- 1. pH measurements, volume / weight measurements, concentration units, Specificity, precision, Accuracy.
- 2. Classes of carbohydrates, lipids and proteins.
- 3. Reagent preparation and preparation of buffers of constant strength.
- 4. Qualitative tests for carbohydrate and lipids.
- 5. Qualitative tests for amino acids and proteins.
- 6. Estimation of sugar by Folin and O-toluene method.
- 7. Estimation of amino acid and protein by ninhydrin method
- 8. Determination of Saponification value of lipids.
- 9. Determination of Iodine value of lipid.
- 10. Determination of acetyl value of a lipid.
- 11. Estimation of urea by diacetyl monooxime method.

Reference Books *

- 1. Laboratory manual of Biochemistry by Pattabiraman , 4th Edition, International book publishers India, 2017.
- 2. Sadasivam and Manickam, "Biochemical Methods", 2nd Edition, New age international Publishers, 2017.

Course Outcomes**

- 1. Ability to understand the basic aspects of standard reagent & buffer preparations.
- 2. Ability to identify various biomolecules qualitatively.
- 3. Ability to estimate the concentration of carbohydrates in a given sample
- 4. Ability to evaluate the concentration of amino acid quantitatively.
- 5. Ability to analyze the types of lipids.
- 6. Ability to apply knowledge of acid & iodine value to determine the quality of lipids.

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)				Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	1	2	3	2	-	-	3	3	-	-	-	3	2	3	1		
CO2	2	3	3	2	-	-	2	3	-	-	-	3	2	3	1		
CO3	2	3	3	3	-	3	2	2	-	-	-	2	2	1	2		
CO4	3	3	3	2	-	2	2	2	-	-	-	2	3	1	1		
CO5	2	2	2	2	-	1	2	2	-	-	-	3	3	2	1		
CO6	2	2	3	3	-	3		3	-	-	-	2	3	2	1		

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT308L		Credits: 1.5
L:T:P - 0:0:3	MICROBIOLOGY LABORATORY	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

LIST OF EXPERIMENTS IN MICROBIOLOGY LABORATORY

- 1. Study of microscopes: Types, working principle, parts of the microscope, handling (operating) & caring.
- 2. Media preparation: NA, Peptone broth, PDA, Macconkeys agar.
- 3. Isolation of bacteria by serial dilution, pour plate ,spread plate and streak plate techniques
- 4. Isolation and identification of bacteria and fungi from different sources.
- 5. Study of colony characteristics and Morphology of bacteria, yeasts and fungi.
- 6. Study of different staining techniques. (Simple staining differential staining)
- 7. Fermentation of Carbohydrates (gas production)
- 8. Growth curve of bacteria and yeast.
- 9. Antibiotic susceptibility testing of bacteria
- 10. Observation of motility by hanging drop technique.

Reference Books *

- 1. Pelczar, Chan and Noel Kreig, 2010, "Microbiology"- 5th Edition Tata Macgraw Hill,.
- 2. Tortora, Funke and Case, 2006. "Microbiology an Introduction" -8th Edition, Pearson Education,
- 3. K. R. Aneja, 2004. "Experiments in Microbiology, Plant Pathology and Biotechnology", 4th Edition, New age International Pub.

Course Outcomes**

After completion of the course student will be able to

- 1. Analyze the principle and procedures of different experiments
- 2. Perform simple and differential staining techniques
- 3. Prepare the media for culturing microbes
- 4. Observe the motility of organisms
- 5. Interpret the instruments and different components used in lab interpret the subject orally.

Course Outcomes				Pro	ograi	nme	Out	come	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	2	2	-	-	2	1	-	-	-	-	-	3	1	1	1	
CO2	2	2	-	-	2	3	-	-	-	-	-	2	2	1	2	
CO3	3	3	-	-	3	2	-	-	-	-	-	2	1	1	2	
CO4	3	3	-	-	2	3	-	-	-	-	-	3	2	1	3	
CO5	1	3	-	-	3	1	-	-	-	-	-	3	1	2	1	
CO6	2	1	-	-	3	1	-	-	-	-	-	3	1	2	1	

Principal, Basaveshwar Engineering College BAGALKOT-587 102,

UBT311L		Credits: 01
L:T:P -0:0:2	UNIT OPERATIONS LABORATORY	CIE Marks: 50
Total Hours/Week: 02		SEE Marks: 50

		LIST OF EXPERIMENTS IN UNIT OPERATIONS LABORATORY
	1.	Friction in circular and non-circular pipes
	2.	Flow rate measurement using Orifice meter
	3.	Flow rate measurement using Venture meter
	4.	Batch sedimentation test
	5.	Constant pressure /constant filtration using leaf filter
	6.	Verification of Stoke's law in Free / Hindered settling
	7.	Determination of screen effectiveness and sieve analysis
	8.	Verification of Bernoulli's theorem
	9.	Unsteady state flow
	10	. Study of pump characteristics
	11	. Study of packed bed characteristics
	12	. Distillation
Re	fere	ence Books *
1.	М	ccabe W.L. And Smith J.C, "Unit Operations In Chemical Engineering" -7 th Edition, Mcgraw-Hill, 2017.
2.		penkloplis, "Principles of Unit Operations" -P H I Publication, 1993.
3.		idger, Banchero and Walter (1955). Introduction to Chemical Engineering, 3rd Edn, Mcgraw- Hill Iblications, USA.
4.		an S Foust, Wenzel LA, Clump CW, Maus L, and Anderson LB (2008). Principles of Unit Operations. 2nd In., John Wiley & Sons, USA.
5.		oulson And Richardson's (2011); Chemical Engineering, Vols I & II., 6 Th Edn., Reed Educational And ofessional Publishing Ltd., USA.
Co	urse	e Outcomes**
Or	ı su	ccessful completion of this course students will be able to
		Determine energy loss due to friction in flow systems
	-	Measure flow rate of incompressible fluids
	3	Perform narticle size analysis

3. Perform particle size analysis

- 4. Evaluate performance of size reduction and filtration equipments
- 5. Understand the working principles of mass transfer equipments
- 6. Evaluate the performance of mass transfer equipments

Course Outcomes				Pro		Program Specific Outcomes (PSOs)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	2	-	-	2	1	-	-	-	-	-	3	1	1	1
CO2	2	2	-	-	2	3	-	-	-	-	-	2	2	1	2

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

CO3	3	3	-	-	3	2	-	-	-	-	-	2	1	1	2
CO4	3	3	-	-	2	3	-	-	-	-	-	3	2	1	3

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

hur

CO5	1	3	-	-	3	1	-	-	-	-	-	3	1	2	1
CO6	2	1	-	-	3	1	-	-	-	-	-	3	1	2	1

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

hur

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE DEPARTMENT OF BIOTECHNOLOGY SCHEME OF TEACHING AND EXAMINATION 2021-2022

V SEMESTER

SI. No.	Subject Code	Subject Title		H	ours/Week		Exa	minatio Marks	
NO.	Code		Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1	UBT516C	Bioprocess & Reaction	3	3	0	0	50	50	100
_	0010100	Engineering		0	0	Ũ			100
2	UBT519C	Genetic Engineering & Applications	3	3	0	0	50	50	100
3	UBT520C	Fundamentals of Bioinformatics	3	2	2	0	50	50	100
4	UBT52XE	Elective-1	3	3	0	0	50	50	100
5	UBT506H	Industrial Safety and Bioethics	3	3	0	0	50	50	100
6	UBT514L	Bioinformatics Lab	1	0	0	2	50	50	100
7	UBT515L	Genetic Engineering Lab	1	0	0	2	50	50	100
8	UCS559L	Advanced C Programming Lab	2	0	0	4	50	50	100
9	UHS002N	Advanced Quantitative Aptitude and Soft Skills	1.0	1	0	0	50	50	100
	T	otal	20	15	02	8	450	450	900

Elective-1

UBT521E: Environmental BT UBT522E: Biomedical Instrumentation UBT525E: Stem cell technology **UBT527E: Nutraceuticals**

L:T:P - 3:0:0	BIOPROCESS & REACTION ENGINEERING	CIE Mai	r ks: 50
Total Hours/Week: 03		SEE Ma	rks: 50
	UNIT-I		10 Hrs.
Kinetics of Homogeneous rea	ctions		
Basic Concepts of Bioreactor	and bioprocess engineering, Concentration depende	ent term of a ra	ate equation.
Rate Constant. Representatio	n of elementary reaction and Non elementary react	ions, Kinetic M	odels of Non
elementary Reactions, Test	ing Kinetic Models. Temperature-dependent te	erm of a rat	e equation:
Temperature dependency from	om Arrhenius law, Collision theory, Transition sta	te theory, The	ermodynamic
approach, Activation Energy.			0
	UNIT–II		10 Hrs.
Interpretation of Batch Biorea	actor Data		
Constant volume batch react	tor, Integral method of analysis of data -first order	r, second orde	r, zero order
	omogenous catalyzed reactions, irreversible reac		
•	ns of shifting order, autocatalytic reactions, rever	sible reactions	, differential
method of analysis of data and			
	UNIT–III		10 Hrs.
Introduction to Reaction Desi	-		
	nsider for designing a reactor, Types of reactors, Bas		
	conversion, Performance equation for ideal batch r		STR and PFR,
space time and space velocity	for flow reactors, design of flow reactors and numeri	ical.	_
	UNIT–IV		10 Hrs.
Design for single reactions			
	n of single reactors, multiple reactors CSTR in serie	•	ies, CSTR in
parallel .PFR in series, in paral	lel, Reactors of different types in series, and numerica	al.	
	Reference Books *		
1. Scott Fogler, H (2016) Elen	nents of Chemical Reaction Engineering, 6 th edn., Pre	entice Hall India	Pvt. Ltd.
	ical Reaction Engineering, Wiley Eastern, 3rd edn, Ne		
,	oprocess Engineering. 3nd edn., Prentice Hall PTR.		
	0) Biochemical Engineering Fundamentals, 2nd edn. N	∕Ic Graw- Hill.	

- 4. Bailey JE and Ollis DF (2010) Biochemical Engineering Fundamentals, 2nd edn. Mc Graw
- 5. Charles D. Holland (1990) Fundamentals of Chemical Reaction Engineering, John Wiley and Sons.
- 6. Pauline M Doran., Bioprocess Engineering Principles, 2nd Edition, Academic Press, USA, 2013.
- 7. Tapobrata Panda., Bioreactors: Analysis and Design, 1st Edition, Tata McGraw Hill Education Private Limited, New Delhi, 2011.

After completion of the course student will be able to

- 1. Understand the basic concept of reaction engineering.
- 2. Predict the order and rate of the different reactions.
- 3. Analyse the batch bioreactor data for different reactions.
- 4. Design the suitable bioreactor for different biochemical reactions.
- 5. Predict the residence time distribution to determine the conversion in non ideal flow reactors
- 6. Analyse bioreactors for various cell cultures.

К

lr

UBT516C

Credits: 03

Course Outcomes				Pro	ogran	nme	Out	com	es (P	Os)			-	gram Spe comes (PS	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	-	1	2	3	1	-	-	-	-	-	1	1	2	3
CO2	1	-	2	2	3	1	-	-	-	-	-	1	1	2	3
CO3	1	-	3	2	3	1	-	-	-	-	-	1	1	2	1
CO4	1	-	3	2	3	1	-	-	-	-	-	1	1	2	1
CO5	1	-	3	2	3	3	-	-	-	-	-	1	1	2	1
CO6	1	-	1	2	3	3	-	-	-	-	-	1	1	2	1

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

my

Total Hours/Week: 03		SEE Mark	s: 50
		·	
	UNIT-I		10 Hrs.
Types of vectors - plasmids, co Enzymes in genetic engineerin	-		
	nucleases-classification, mode of action, application phosphatase, polynucleotide Kinase, Ligases, and	-	
	UNIT–II		10 Hrs.
chain reaction (PCR), its types Northern hybridization technic Construction of cDNA libraries	tion, Fluorescent In situ hybridization (FISH), colon and applications, methods of nucleic acid hybridizat ues.	ion, Southern,	Western and
	UNIT–III		12 Hrs.
microprojectile system, and mediated gene transfer in pla and Cointegrate vectors. Transgenic science and geneti Transgenic science in plant in plant transformation for produ	lants, animals and microbes –Transformation, micro liposome mediated transfer, embryonic stem ce nts – Ti & Ri Plasmid: structure and functions, Ti ba c improvement: nprovement, Antisense RNA technology (Flavr sav activity and performance – Herbicide resistance - gly and its mode of action), Cry proteins – mechanism of	II method. Agi ased vectors- B r tomatoes). A yphosate. insec	robacterium- inary vectors pplication of
	UNIT–IV		10 Hrs.
and gene silencing. Gene thera agents in blood clotting. Challe Applications:	e therapy-gene targeting, gene augmentation, assisted py in the treatment of cancer, SCID, muscular dystro nges in gene therapy. roduction of Insulin, growth hormones, monoclonal Reference Books *	pphy. Use of thr	
1 Bornard Click and L	Pasternak (2017). Molecular Biotechnology – Prin	ciplos and any	alications of
recombinant DNA, 2 nd e 2. Watson (2010), Recomb			

GENETIC ENGINEERING & APPLICATIONS

UBT519C

L:T:P - 3:0:0

Credits: 03

CIE Marks: 50

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

June

After completion of the course student will be able to

- 1. Emphasize on the basic aspects of genetic engineering; the key areas and apply the knowledge in vectors used in genetic engineering experiments.
- 2. Apply the properties of various enzymes and vectors in gene and genome manipulation.
- 3. Acquire working knowledge on the mechanism of methods of nucleic acid detection, hybridization and amplification and their applications in the research.
- 4. Acquire working knowledge on the construction of genomic and cDNA libraries, their applications in the research and biology of Bacillus thuringiensis.
- 5. Identify the various gene transfer techniques in plants, animals and microbes that are essential for controlled protein production in the industry and acquire knowledge on various strategies of Gene therapy and its application in therapeutics.
- 6. Identify and apply the current applications and advances of biotechnology and describe the steps involved in the production of biopharmaceuticals in microbial systems and industrial utilization.

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)				gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	-	1	2	3	1	-	-	-	-	-	1	1	2	3
CO2	1	-	2	2	3	1	-	-	-	-	-	1	1	2	3
CO3	1	-	3	2	3	1	-	-	-	-	-	1	1	2	1
CO4	1	-	3	2	3	1	-	-	-	-	-	1	1	2	1
CO5	1	-	3	2	3	3	-	-	-	-	-	1	1	2	1
CO6	1	-	1	2	3	3	-	-	-	-	-	1	1	2	1

UBT520C

L:T:P – 2:2:0

FUNDAMENTALS OF BIOINFORMATICS

Credits: 03 CIE Marks: 50 SEE Marks: 50

Total Hours/Week: 04

UNIT-I

Introduction to Bioinformatics and Biological Database

Introduction to bioinformatics, Components of bioinformatics and interdisciplinary nature of bioinformatics, Classification of biological databases; Primary database: NCBI, GenBank, DDBJ and EMBL, PIR, Uniprot; Secondary databases: PROSITE, PRINTS, BLOCKS and Pfam; Structure databases: Protein Data Bank (PDB), MMDB, CATH, SCOP; Specialized databases: PubMed, OMIM, Metabolic Pathway-KEGG;ExPasy and PubChem databases, File format: GenBank flat file, PDB flat file. Tutorials: Practices on other primary and secondary databases

UNIT–II

Sequence alignment and database searches:

Introduction, Types of sequence alignment, Comparison between global and local alignment, Pairwise sequence alignment: Dot matrix analysis, Dynamic programming, Global alignment-Needleman-Wunch algorithm, Local Alignment-Smith & Waterman algorithm, Substitution matrix- BLOSUM and PAM; GAP Penalty; Low complexity regions; Word/k-tuple method- BLAST, FASTA.

Multiple Sequence Alignment:Introduction, applications of MSA; Types of MSA: Progressive method of MSA-Clustal W; Iterative method of MSA; Motifs and Patterns; Statistical models of MSA-Position Specific Scoring Matrix (PSSM) and Profiles.

Tutorials: Solving problems on pairwise sequence alignment

UNIT–III

UNIT-IV

Phylogenetic analysis and predictive methods using sequences

Introduction, concepts of trees, types of evolutionary trees, Rooted and unrooted trees, Steps in constructing phylogenetic trees, Tree building methods - Distance based methods: Neighbor Joining (NJ) method, Fitch-Margoliash (FM) method; Character based method: Maximum parsimony; Tree Evaluation methods, Phylogenetic Softwares.

Predictive Methods using sequences: Structure of Prokaryote and Eukaryote genes; Algorithms for Prokaryotic and Eukaryotic gene prediction, Web based tools for gene prediction (ORF finder, GenScan).Protein Secondary Structure Prediction, Tertiary Structure Predictions: Homology modelling.

Tutorials: Practices on prediction of phylogenetic trees

10 Hrs.

Plasmid mapping and primer designing & molecular modelling techniques

Restriction mapping, Web based tools: Restriction Mapper and REBASE. Utilities of Mac Vector and Vector NTI; Basics of Primer designing, Primer design softwares (PRIME3). Rational Approaches in Drug Design, molecular docking, deriving the Pharmacophoric Pattern, quantitative structure-activity relationship (QSAR), deriving bioactive conformations, Calculation of Molecular Properties, Dockingsoftwares (AUTODOCK, HEX) Tutorials: Solving problems related to Restriction mapping and Primer designing

Reference Books *

- 1. Introduction to Bioinformatics Arthur Lesk, Oxford, 2nd Edition, 2006.
- 2. Bioinformatics Stuart M Brown, NYU Medical Center, NY USA. 2000.
- 3. Fundamental Concepts of Bioinformatics D E Krane & M L Raymer, Pearson, 2006.
- 4. Computational methods for macromolecular sequence analysis R F Doolittle. Academic Press, 1996.

12 Hrs.

10 Hrs.

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

June

After completion of the course student will be able to

- 1. Importance of databases involved in bioinformatics along with their file formats
- 2. Will have idea on searching similar sequences in databases and find similarity between given set of sequences
- 3. Derive evolutionary relationship between genes and proteins by phylo-genetic analysis
- 4. Explain various statistical tools involved in predicting the structure of genes and proteins
- 5. The principle behind restriction mapping and primer designing
- 6. Different approaches involved in silico drug design

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course					Pro	gram	me C	Dutco	omes				Prog	gramme Spo Outcomes	
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3	2	-	-	2	1	2	2	-	-	-	3	2	2	3
CO 2	3	2	2	2	2	1	2	-	-	-	-	3	2	2	3
CO 3	3	2	-	1	-	-	2	-	-	-	-	3	2	2	3
CO 4	2	2	-	1	-	2	-	-	-	-	-	3	1	-	2
CO 5	2	2	2	1	-	2	-	2	-	-	-	1	2	-	2
CO 6	2	1	2	2	2	2	1	1	-	-	-	1	1	1	1

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT521E		Credi	ts: 03
L:T:P - 3:0:0	ENVIRONMENTAL BT	CIE Ma	rks: 50
Total Hours/Week: 03		SEE Ma	rks: 50
			10 11-0
	UNIT-I		10 Hrs.
microorganisms, biogeochemical Bioaccumulation of toxicants Characteristics of Xenobiotics, I Bioaccumulation, Process of	ntal BT. Characteristics of soil, microbial flora of so I role of soil microorganisms. Relationship of Bioaccumulation with Chemical S toxicants uptake, Factors affecting bioaccumu	structure, Ecop	ohysiology of
bioaccumulation.	UNIT–II		12 Urc
Biological treatment of waste w			12 Hrs.
processing industries, dairy indus Solid waste management Basic aspects, general composit generation; Solid waste mana	processing industries like sugar factories, veget stries, beverages industries, and distilleries. tion of urban solid wastes, aerobic treatment, an gement through Biotechnological processes inv	naerobic treati	ment, biogas
Biomedical wastes, MoEF rules.	····		
	UNIT-III		10 Hrs
Bioleaching and Biomining	UNIT-III		10 Hrs.
Bioremediation Major contaminants of air, wate microbes, Phytoremediation, E	UNIT–III nethods of bioleaching, Microbial recovery of metal er and soil, Biomonitors of environment (Bioindicat Biofilms its applications. Bio-stimulation of Nati	tors), Bioreme	petroleum. diation using
Microbes in Bioleaching- types, n Bioremediation Major contaminants of air, wate	nethods of bioleaching, Microbial recovery of metal er and soil, Biomonitors of environment (Bioindicat	tors), Bioreme	petroleum. diation using
Microbes in Bioleaching- types, n Bioremediation Major contaminants of air, water microbes, Phytoremediation, B activities, Bio-augmentation. Biotechnology in biodiversity co Value of biodiversity, threats to Bioresource conservation progra	nethods of bioleaching, Microbial recovery of metal er and soil, Biomonitors of environment (Bioindicat Biofilms its applications. Bio-stimulation of Nation UNIT–IV Inservation biodiversity, Biosphere reserves and Ecosystem Co amme, Biotechnological processes for bioresource BT and its role in utilization of Biodiversity, Ir	tors), Bioreme urally occurri onservation, A e assessment,	petroleum. diation using ng microbial 10 Hrs. pproaches to BT in ex situ
Microbes in Bioleaching- types, n Bioremediation Major contaminants of air, water microbes, Phytoremediation, B activities, Bio-augmentation. Biotechnology in biodiversity con Value of biodiversity, threats to Bioresource conservation progra conservation of Biodiversity, B	nethods of bioleaching, Microbial recovery of metal er and soil, Biomonitors of environment (Bioindicat Biofilms its applications. Bio-stimulation of Nate UNIT–IV Inservation biodiversity, Biosphere reserves and Ecosystem Co amme, Biotechnological processes for bioresource	tors), Bioreme urally occurri onservation, A e assessment,	petroleum. diation using ng microbial 10 Hrs. pproaches to BT in ex situ
Microbes in Bioleaching- types, n Bioremediation Major contaminants of air, water microbes, Phytoremediation, Biotechnology in biodiversity con Value of biodiversity, threats to Bioresource conservation progrations conservation of Biodiversity, Biodiversity management. 1. Mahopatra P K (2006), Textbi Ltd. 2. Dubey R C and Maheshwari D	nethods of bioleaching, Microbial recovery of metal er and soil, Biomonitors of environment (Bioindicat Biofilms its applications. Bio-stimulation of Nation UNIT–IV Inservation biodiversity, Biosphere reserves and Ecosystem Co amme, Biotechnological processes for bioresource BT and its role in utilization of Biodiversity, Ir	tors), Bioreme Jurally occurring onservation, A e assessment, nternational in onal Publishing Chand and Co	petroleum. diation using ng microbial 10 Hrs. pproaches to BT in ex situ nitiatives for g House Pvt.

After completion of the course student will be able to

- 1. Understand issues and scope of Environmental BT and concepts of Bioaccumulation.
- 2. Develop different treatment methods for waste water by using BT approach.
- 3. Develop different treatment methods for solid waste by using BT approach.
- 4. Apply the knowledge of bioleaching for metal recovery and bioremediation processes to remove

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

environmental contaminants.

- 5. Understand the Value of biodiversity and threats to biodiversity.
- 6. Apply the knowledge of BT in biodiversity conservation.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Pr	ogra	mme	Out	come	es (P	Os)				gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	2	2	-	-	-	2	-	3	-	1	2	3	1
CO2	2	3	2	1	-	-	-	1	2	-	-	-	3	3	1
CO3	2	3	2	1	-	-	-	1	2	-	-	-	3	3	1
CO4	1	3	2	3	-	-	-	2	2	3	-	-	2	3	-
CO5	-	-	-	-	-	-	-	2	-	3	-	3	-	-	-
CO6	1	3	2	2	-	-	-	-	2	2	-	-	1	3	-

UBT527E		Credit	s: 03
L:T:P – 3:0:0	NUTRACEUTICALS	CIE Marl	ks: 50
Total Hours/Week: 03		SEE Mar	ks: 50
	UNIT-I		10 Hrs.
foods and phytonutraceuticals Recommended dietary intake protein utilisation. Basics of	ssification of nutraceuticals, dietary supplements s. Scope and opportunities involved in the industry (RDA), acceptable dietary intake, nitrogen balance, energy balance - Basal Metabolic Rate (BMR), E	, Indian and glo, protein efficie	obal scenaric ncy ratio, ne
Standard Dynamic Action (SDA	A) with special reference to nutraceutical industry.		10 Hrs.
Nutrition related diseases and	UNIT-II		TO HLS.
antioxidants - use of antioxida	rolemia, cancer, glands in the prevention and ants as dietary supplements in prevention and trea and functional foods in pediatrics, geriatrics, sports, p	tment of cance	r, obesity and
	· · · · · · · · · · · · · · · ·		
Nutraceuticals of microbial, pl Concept of prebiotics and applications - examples of bac extraction from plant sources acids, antioxidants and minera	UNIT-III lant and animal origin probiotics - principle, mechanism, production cteria used as probiotics, use of prebiotics in maintain s. Symbiotics for maintaining good health. Algae a als - extraction and enrichment. Plant secondary m	aining the usefu as source of om netabolites, clas	10 Hrs. by involved Il microflora bega - 3 fatt sification and
Nutraceuticals of microbial, pl Concept of prebiotics and applications - examples of bac extraction from plant sources acids, antioxidants and minera sub-classification - Alkaloids nutraceuticals of animal orig	UNIT-III lant and animal origin probiotics - principle, mechanism, production cteria used as probiotics, use of prebiotics in maintain s. Symbiotics for maintaining good health. Algae a	aining the usefu as source of om netabolites, clas Sources and e	10 Hrs. ogy involved Il microflora lega - 3 fatt sification and extraction o
Nutraceuticals of microbial, pl Concept of prebiotics and applications - examples of bac extraction from plant sources acids, antioxidants and minera sub-classification - Alkaloids nutraceuticals of animal orig	UNIT–III lant and animal origin probiotics - principle, mechanism, production cteria used as probiotics, use of prebiotics in mainta s. Symbiotics for maintaining good health. Algae a als - extraction and enrichment. Plant secondary m s, phenols, Terpenoids. Animal metabolites -	aining the usefu as source of om netabolites, clas Sources and e	10 Hrs. ogy involved Il microflora lega - 3 fatt sification and extraction o
Nutraceuticals of microbial, pl Concept of prebiotics and applications - examples of bac extraction from plant sources acids, antioxidants and minera sub-classification - Alkaloids nutraceuticals of animal orig polysaccharides	UNIT–III lant and animal origin probiotics - principle, mechanism, production cteria used as probiotics, use of prebiotics in mainta s. Symbiotics for maintaining good health. Algae a als - extraction and enrichment. Plant secondary m s, phenols, Terpenoids. Animal metabolites - s gin. Examples: chitin, chitosan, glucosamine, chor UNIT–IV	aining the usefu as source of om netabolites, clas Sources and e	10 Hrs. ogy involved il microflora lega - 3 fatt sification and extraction o te and othe
Nutraceuticals of microbial, pl Concept of prebiotics and applications - examples of bac extraction from plant sources acids, antioxidants and minera sub-classification - Alkaloids nutraceuticals of animal orig polysaccharides Biotechnology in Phytonutrac Role of medicinal and aroma culture, cultivation, post har yielding lines and yield enha	UNIT–III lant and animal origin probiotics - principle, mechanism, production cteria used as probiotics, use of prebiotics in mainta s. Symbiotics for maintaining good health. Algae a als - extraction and enrichment. Plant secondary m s, phenols, Terpenoids. Animal metabolites - s gin. Examples: chitin, chitosan, glucosamine, chor UNIT–IV	aining the usefu as source of om netabolites, clas Sources and e ndroitin sulpha on - convention ment, developm ofortification ar	10 Hrs. by involved il microflora lega - 3 fatt sification and extraction o te and othe 10 Hrs. al and tissue ment of hig
Nutraceuticals of microbial, pl Concept of prebiotics and applications - examples of bac extraction from plant sources acids, antioxidants and minera sub-classification - Alkaloids nutraceuticals of animal orig polysaccharides Biotechnology in Phytonutrac Role of medicinal and aroma culture, cultivation, post har yielding lines and yield enha enhancement.GM foods with e	UNIT-III lant and animal origin probiotics - principle, mechanism, production cteria used as probiotics, use of prebiotics in mainta s. Symbiotics for maintaining good health. Algae a als - extraction and enrichment. Plant secondary m s, phenols, Terpenoids. Animal metabolites - 1 gin. Examples: chitin, chitosan, glucosamine, chor UNIT-IV euticals atic plants in nutraceutical industry – propagatio vest technology and strategies for crop improve ancement, plant genomics and metabolomics. Bio enhanced nutraceutical properties. Golden rice, GM Reference Books *	aining the usefu as source of om netabolites, clas Sources and e ndroitin sulpha on - convention ment, developm ofortification ar Tomatoes.	10 Hrs. by involved il microflora lega - 3 fatt sification and extraction o te and othe 10 Hrs. al and tissue ment of hig
Nutraceuticals of microbial, pl Concept of prebiotics and applications - examples of bac extraction from plant sources acids, antioxidants and minera sub-classification - Alkaloids nutraceuticals of animal orig polysaccharides Biotechnology in Phytonutrac Role of medicinal and aroma culture, cultivation, post har yielding lines and yield enha enhancement.GM foods with e 1. M. Maffei ,Dietary Supple 2. Shahidi and Weerasingh Chemical Society,1 st Edit 3. Richard Neeser& J. Bruc	UNIT-III lant and animal origin probiotics - principle, mechanism, production cteria used as probiotics, use of prebiotics in mainta s. Symbiotics for maintaining good health. Algae a als - extraction and enrichment. Plant secondary m s, phenols, Terpenoids. Animal metabolites - 1 gin. Examples: chitin, chitosan, glucosamine, chor UNIT-IV euticals atic plants in nutraceutical industry – propagatio vest technology and strategies for crop improve ancement, plant genomics and metabolomics. Bio enhanced nutraceutical properties. Golden rice, GM Reference Books * ements of Plant Origin, Taylor & Francis,1 st Edition, e, Nutraceutical beverages Chemistry, Nutrition ar tion, 2004. ce German (2004) Bioprocesses and Biotechnology	aining the usefu as source of om netabolites, clas Sources and e ndroitin sulpha on - convention ment, developr ofortification ar Tomatoes. 2003. nd health Effect	10 Hrs. by involved il microflora lega - 3 fatt sification and extraction of te and othe 10 Hrs. al and tissue ment of high ad nutritiona s, American
Nutraceuticals of microbial, pl Concept of prebiotics and applications - examples of bac extraction from plant sources acids, antioxidants and minera sub-classification - Alkaloids nutraceuticals of animal orig polysaccharides Biotechnology in Phytonutrac Role of medicinal and aroma culture, cultivation, post har yielding lines and yield enha enhancement.GM foods with e 1. M. Maffei ,Dietary Supple 2. Shahidi and Weerasingh Chemical Society,1 st Edit 3. Richard Neeser& J. Bruc Nutraceuticals, Jean, Mar	UNIT-III lant and animal origin probiotics - principle, mechanism, production cteria used as probiotics, use of prebiotics in mainta s. Symbiotics for maintaining good health. Algae a als - extraction and enrichment. Plant secondary m s, phenols, Terpenoids. Animal metabolites - 1 gin. Examples: chitin, chitosan, glucosamine, chor UNIT-IV euticals atic plants in nutraceutical industry – propagatio vest technology and strategies for crop improve ancement, plant genomics and metabolomics. Bio enhanced nutraceutical properties. Golden rice, GM Reference Books * ements of Plant Origin, Taylor & Francis,1 st Edition, e, Nutraceutical beverages Chemistry, Nutrition ar tion, 2004. ce German (2004) Bioprocesses and Biotechnology	aining the usefu as source of om netabolites, clas Sources and e ndroitin sulpha on - convention ment, developr ofortification ar Tomatoes. 2003. nd health Effect	10 Hrs. by involved il microflora lega - 3 fatt sification and extraction of te and othe 10 Hrs. al and tissue ment of high ad nutritiona s, American

hur

- 1. To be aware of basic concepts of nutraceuticals and nutrition.
- 2. To have a general idea of scope of nutraceuticals and functional foods.
- 3. To have brief idea about nutrition related health disorders and the role of Nutraceuticals.
- 4. To classify nutraceuticals and the role of nutraceuticals among different age groups.
- 5. To learn about the basic aspects of nutraceuticals derived from microbial, plant and animal origin.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course					Pro	gram	me C	Outco	mes			Prog	ramme Spe Outcomes	ecific
Outcomes	1 2 3 4 5 6 7 8 9 10 11 11									12	PSO1	PSO2	PSO3	
CO 1	3	2	-	-	2	1	2	2			3	2	2	3
CO 2	3	2	2	2	2	1	2	-			3	2	2	3
CO 3	3	2	-	1	-	-	2	-			3	2	2	3
CO 4	2	2	-	1	-	2	-	-			3	1	-	2
CO 5	2	2	2	1	-	2	-	2			1	2	-	2
CO 6	2	1	2	2	2	2	1	1			1	1	1	1

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

L:T:P - 3:0:0

Total Hours/Week: 03

UNIT-I

UNIT-II

UNIT-III

10 Hrs.

12 Hrs.

10 Hrs.

Introduction

Sources of Biomedical signals, Basic medical instrumentation system, Performance requirements of medical instrumentation systems, PC based medical instruments, General constraints in design of medical instrumentation systems.

Bioelectric Signals and Electrode

Origin of bioelectric signals, Recording electrodes, - Electrode-tissue interface, metal electrolyte interface, electrolyte -skin interface, Polarization, Skin contact impedance, Silver – silver chloride electrodes, Electrodes for ECG, EEG, EMG, Electrical conductivity of electrode jellies and creams, Microelectrode. Patient Safety: Electrode shock hazards, Leakage currents.

ECG & EEG

Electrical activity of heart, Genesis & characteristics of Electrocardiogram (ECG), Block diagram description of an Electrocardiograph, ECG Lead Systems, and Multichannel ECG machine Genesis of Electroencephalogram (EEG), Block diagram description of an Electroencephalograph, 10-20 Electrode system, Computerized analysis of EEG.

Cardiac pacemakers and defibrillators

Need for Cardiac pacemaker, External pacemaker, Implantable pacemaker, Programmable pacemakers, DC defibrillator, AC defibrillator and Implantable Defibrillator.

Patient monitoring system

Bedside monitors, Central Monitoring System, Measurement of Heart rate -Average heart rate meter, Instantaneous heart rate meter, (Cardio tachometer), Measurement of Pulse Rate, Blood pressure measurement -direct and indirect method, Rheographic method, Oscillometric method, Ultrasonic Doppler shift method, Measurements of Respiration rate -Thermistor method, impedance puenmography, CO2 method, and Apnea detector. Blood flow meters: Electromagnetic and its types, Ultrasonic, NMR, Laser Doppler. Blood gas analyzers: Blood pH measurement, Measurement of Blood pCO2, pO2.

Physiological transducers

Introduction, classification, performance characteristics of transducers-static and dynamic transducers, Displacement, position and motion transducers, Pressure transducer, Transducers for body temperature measurement, Optical Fiber sensor and Biosensor

Recording systems

UNIT-IV

10 Hrs.

Basic recoding system, general considerations for signal conditioners, preamplifiers-instrumentation amplifier, isolation amplifier, and ink jet recorder, potentiometric recorder, thermal array recorder and electrostatic recorder.

Analysis of Cardiac output measurement: Indicator dilution method, Dye dilution method, Thermal dilution techniques, Measurement of Continuous cardiac output derived from the aortic pressure waveform, Impedance technique. Pulmonary function analysis: Pulmonary function measurement, Spirometry, Puemotachometer, Measurement of Volume, Nitrogen washout technique.

Reference Books *

1. Khandpur R S (2003), Hand book of Biomedical Instrumentation (2nd Edition), Tata McGraw-Hill Publishing Company Limited.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

- 2. Enderle J, Blanchard S & Bronzino J (2005), Introduction to Biomedical Engineering, Elsevier.
- 3. Carr J J, Brown J M (2005), Introduction to Biomedical equipment technology(4th Edition), Prentice hall.

After completion of the course student will be able to

- 1. Able to understand basic concepts of biomedical signals.
- 2. Able to know ECG and EEG.
- 3. Able to understand the patient monitoring system and recording systems
- 4. Able to know characteristics of transducers
- 5. Able to understand various analysis techniques
- 6. Able to understand the recording systems.

*Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Pre		gram Spe comes (P									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-	2	-	-	-	-	-	-	-	1	-	2	-
CO2	2	3	2	-	-	-	-	-	-	-	-	-	2	3	1
CO3	2	3	2	1	-	-	-	-	-	-	-	-	3	3	1
CO4	1	2	2	3	-	-	-	-	-	-	-	-	1	3	-
CO5	1	3	2	2	-	-	-	•	-	-	-	-	2	3	1
CO6	-	-	-	-	-	-	-	-	-	-	-	3	-	-	-

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

		0.00100								
L:T:P - 3:0:0										
Total Hours/Week: 40	SEEMark									
	UNIT-I	10 Hrs.								
•	tion of stem cells - concepts of stem cells - diffe									
proliferation , pluripolericy – preservation protocols.	, self – maintainance and self – renewal –problen	ns in measuring stem cells								
UNIT–II										
Stem cell concept in plants Stem cell and founder zones plants.	in plants – particularly their roots – stem cells of sh	oot meristems of higher								
	UNIT–III	10 Hrs.								
Stem cell concept in animals Skeletal muscle stem cell – Mammary stem cells – intestinal stem cells – keratinocyte stem cells of cornea – skin and hair follicles –Tumour stem cells, Embryonic stem cell biology - factors influencing proliferation and differentiation of stem cells – hormone role in differentiation.										
	UNIT-IV	10 Hrs.								
Potential uses of stem cells	the regulation of haemopoietic stem cells. – gene therapy – immunotherapy – tissue engineering	g –blood and bone								
	Reference Books *									
Medicine, Artech House 2. Lanza R et al.(2007), Pr	ovicG (2008), Translational Approaches in Tissue Engi e, INC Publications. inciples of Tissue Engineering(3rd Edition), Academic									
Course Outcomes**										
2. Isolate and Culture of N	ematopoietic Stem cells									

UBT525E

Credits: 03

*Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

Course Outcomes				Pr	ogra	mme	Out	come	es (Po	Os)			-	gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-	-	-	-	-	-	-	-	1	1	2	2	2
CO2	2	3	2	-	-	-	-	-	-	-	1	1	2	3	1
CO3	2	3	2	1	-	-	-	-	-	-	-	1	3	3	1
CO4	1	2	2	-	-	-	-	-	-	-	1	2	1	3	-
CO5	1	3	2	2	-	-	-	-	-	-	-	1	2	3	1
CO6	-	-	-	-	-	-	-	-	-	-	1	3	2	2	2

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

June

UBT506H	
L:T:P – 3:0:0	INDUSTRIAL SAFETY AND BIOETHICS
Total Hours/Week: 03	

Credits: 03 CIE Marks: 50 SEE Marks: 50

UNIT-I	10 Hrs.
Introduction to Bioethics & Biosafety	
Definition and scopeof bioethics and biosafety, Ethical implications and need for biosafety, Leg.	al and Socio-
Economic impacts of Biotechnology. Convention on biological weapons. Bioterrorism-class	sification of
biological agents with examples.	
Biosafety regulation guidelines	
Recombinant DNA Advisory Committee (RDAC) ,Institutional Biosafety committee(IBC),Review Co	ommittee on
Genetic Modification (RCGM), Genetic Engineering Approval Committee (GEAC), Biosafety guideling	nes- national
guidelines, Cartagena Protocol on Biosafety.	
UNIT–II	10 Hrs.
Biosafety Regulation:	
Genetically modified organisms and their release in environment, Laboratory associated infectio	ns and other
hazards, Good Lab Practices and Good Manufacturing Process (GLP & GMP). Biosafety	y levels for
microorganismBL1,BL2,BL3,BL4) plants (BL1-P,BL2-P,BL3-P,BL4-P) animals (BL1-N,BL2-N,BL3-N,BL4-P) animals (BL1-N,BL4-P) ani	1-N).
Risk assessment during laboratory research and risk groups. Recombinant organisms and trans	sgenic crops.
Guideline for labeling GM crops. Containments; Physical, Biological. Field trial methods usin	ng transgenic
plants.	
UNIT–III	10 Hrs.
Food and Pharma safety: Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply	
Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply right, Plant Breeder's Right, Environmental aspects of biotech applications. Special application of in biotechnology and case studies. FlavrSavr Tomato as model case, case studies of relevance (E	f patent laws
Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply right, Plant Breeder's Right, Environmental aspects of biotech applications. Special application of in biotechnology and case studies. FlavrSavr Tomato as model case, case studies of relevance (E Btbrinjal). Licensing and cross licensing.	f patent laws Eg. Bt cotton,
Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply right, Plant Breeder's Right, Environmental aspects of biotech applications. Special application of in biotechnology and case studies. FlavrSavr Tomato as model case, case studies of relevance (EBtbrinjal). Licensing and cross licensing.	f patent laws
Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply right, Plant Breeder's Right, Environmental aspects of biotech applications. Special application of in biotechnology and case studies. FlavrSavr Tomato as model case, case studies of relevance (EBtbrinjal). Licensing and cross licensing.	f patent laws g. Bt cotton, 10 Hrs.
Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply right, Plant Breeder's Right, Environmental aspects of biotech applications. Special application of in biotechnology and case studies. FlavrSavr Tomato as model case, case studies of relevance (EBtbrinjal). Licensing and cross licensing. UNIT–IV Industrial safety Need for safety, importance of occupational safety, Health and safety programs, Safe and unsafe of the safety programs.	f patent laws g. Bt cotton, 10 Hrs. conditions.
Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply right, Plant Breeder's Right, Environmental aspects of biotech applications. Special application of in biotechnology and case studies. FlavrSavr Tomato as model case, case studies of relevance (EBtbrinjal). Licensing and cross licensing. UNIT–IV Industrial safety Need for safety, importance of occupational safety, Health and safety programs, Safe and unsafe of Accidents: Accident preventive measure, Measurement and control of safety performance, 5E's	f patent laws g. Bt cotton, 10 Hrs. conditions.
Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply right, Plant Breeder's Right, Environmental aspects of biotech applications. Special application of in biotechnology and case studies. FlavrSavr Tomato as model case, case studies of relevance (EBtbrinjal). Licensing and cross licensing. UNIT–IV Industrial safety Need for safety, importance of occupational safety, Health and safety programs, Safe and unsafe of Accidents: Accident preventive measure, Measurement and control of safety performance, 5E's prevention Safety policy	f patent laws g. Bt cotton, 10 Hrs. conditions.
Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply right, Plant Breeder's Right, Environmental aspects of biotech applications. Special application of in biotechnology and case studies. FlavrSavr Tomato as model case, case studies of relevance (EBtbrinjal). Licensing and cross licensing. UNIT–IV Industrial safety Need for safety, importance of occupational safety, Health and safety programs, Safe and unsafe of Accidents: Accident preventive measure, Measurement and control of safety performance, 5E's prevention Safety policy Fire: Fire extinguishers and fire exits, extinguishing agents.	f patent laws Eg. Bt cotton, 10 Hrs. conditions. for accident
Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply right, Plant Breeder's Right, Environmental aspects of biotech applications. Special application of in biotechnology and case studies. FlavrSavr Tomato as model case, case studies of relevance (EBtbrinjal). Licensing and cross licensing. UNIT–IV Industrial safety Need for safety, importance of occupational safety, Health and safety programs, Safe and unsafe of Accidents: Accident preventive measure, Measurement and control of safety performance, 5E's prevention Safety policy Fire: Fire extinguishers and fire exits, extinguishing agents. Importance of safety in food and Pharma industry. Food safety, Biological, chemical and Phys	f patent laws g. Bt cotton, 10 Hrs. conditions. for accident
Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply right, Plant Breeder's Right, Environmental aspects of biotech applications. Special application of in biotechnology and case studies. FlavrSavr Tomato as model case, case studies of relevance (EBtbrinjal). Licensing and cross licensing. UNIT–IV Industrial safety Need for safety, importance of occupational safety, Health and safety programs, Safe and unsafe of Accidents: Accident preventive measure, Measurement and control of safety performance, 5E's prevention Safety policy Fire: Fire extinguishers and fire exits, extinguishing agents.	f patent laws g. Bt cotton, 10 Hrs. conditions. for accident
Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply right, Plant Breeder's Right, Environmental aspects of biotech applications. Special application of in biotechnology and case studies. FlavrSavr Tomato as model case, case studies of relevance (EBtbrinjal). Licensing and cross licensing. UNIT–IV Industrial safety Need for safety, importance of occupational safety, Health and safety programs, Safe and unsafe of Accidents: Accident preventive measure, Measurement and control of safety performance, 5E's prevention Safety policy Fire: Fire extinguishers and fire exits, extinguishing agents. Importance of safety in food and Pharma industry. Food safety, Biological, chemical and Phys HAACP system, Pharma safety. Food and safety act. Injuries by industrial sector. Reference Books *	f patent laws g. Bt cotton, 10 Hrs. conditions. for accident
Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply right, Plant Breeder's Right, Environmental aspects of biotech applications. Special application of in biotechnology and case studies. FlavrSavr Tomato as model case, case studies of relevance (EBtbrinjal). Licensing and cross licensing. UNIT–IV Industrial safety Need for safety, importance of occupational safety, Health and safety programs, Safe and unsafe of Accidents: Accident preventive measure, Measurement and control of safety performance, 5E's prevention Safety policy Fire: Fire extinguishers and fire exits, extinguishing agents. Importance of safety in food and Pharma industry. Food safety, Biological, chemical and Phys HAACP system, Pharma safety. Food and safety act. Injuries by industrial sector. Reference Books * 1. Sateesh M.K.(2012),Bioethics and Biosafety,I.K.International Publication	f patent laws g. Bt cotton, 10 Hrs. conditions. for accident
Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply right, Plant Breeder's Right, Environmental aspects of biotech applications. Special application of in biotechnology and case studies. FlavrSavr Tomato as model case, case studies of relevance (EBtbrinjal). Licensing and cross licensing. UNIT–IV Industrial safety Need for safety, importance of occupational safety, Health and safety programs, Safe and unsafe of Accidents: Accident preventive measure, Measurement and control of safety performance, 5E's prevention Safety policy Fire: Fire extinguishers and fire exits, extinguishing agents. Importance of safety in food and Pharma industry. Food safety, Biological, chemical and Phys HAACP system, Pharma safety. Food and safety act. Injuries by industrial sector. Reference Books * 1. Sateesh M.K.(2012),Bioethics and Biosafety,I.K.International Publication 2. Singh B.D.(2010), Biotechnology Expanding Horizon(3 rd revised edition), Kalyani Publishers.	f patent laws g. Bt cotton, 10 Hrs. conditions. for accident ical Hazards-
Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply right, Plant Breeder's Right, Environmental aspects of biotech applications. Special application of in biotechnology and case studies. FlavrSavr Tomato as model case, case studies of relevance (EBtbrinjal). Licensing and cross licensing. UNIT–IV Industrial safety Need for safety, importance of occupational safety, Health and safety programs, Safe and unsafe of Accidents: Accident preventive measure, Measurement and control of safety performance, 5E's prevention Safety policy Fire: Fire extinguishers and fire exits, extinguishing agents. Importance of safety in food and Pharma industry. Food safety, Biological, chemical and Phys HAACP system, Pharma safety. Food and safety act. Injuries by industrial sector. Reference Books * 1. Sateesh M.K.(2012),Bioethics and Biosafety,I.K.International Publication 2. Singh B.D.(2010), Biotechnology Expanding Horizon(3 rd revised edition), Kalyani Publishers.	f patent laws g. Bt cotton, 10 Hrs. conditions.
Biosafety assessment procedures for biotech foods and Pharma products. Procedure to apply right, Plant Breeder's Right, Environmental aspects of biotech applications. Special application of in biotechnology and case studies. FlavrSavr Tomato as model case, case studies of relevance (EBtbrinjal). Licensing and cross licensing. UNIT–IV Industrial safety Need for safety, importance of occupational safety, Health and safety programs, Safe and unsafe of Accidents: Accident preventive measure, Measurement and control of safety performance, 5E's prevention Safety policy Fire: Fire extinguishers and fire exits, extinguishing agents. Importance of safety in food and Pharma industry. Food safety, Biological, chemical and Phys HAACP system, Pharma safety. Food and safety act. Injuries by industrial sector. Reference Books * 1. Sateesh M.K.(2012),Bioethics and Biosafety,I.K.International Publication 2. Singh B.D.(2010), Biotechnology Expanding Horizon(3 rd revised edition), Kalyani Publishers. 1. <u>Goel D</u> and <u>Parashar</u> S (2010), IPR-Biosafety and Bioethics(2 nd edition), Pearson Edu	f patent laws Eg. Bt cotton, 10 Hrs. conditions. for accident ical Hazards-

After completion of the course student will be able to

- 1. Emphasize on the basic aspects of Biosafety and ethics; the key areas and apply the knowledge in the social, legal & ethical issues connected with BT, BWC and Bioterrorism
- 2. Interpret & describe biosafety regulation guidelines committees, Cartagena protocol & their relevant

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

applications in BT

- 3. Identify biosafety levels as relevant to Biotechnology & apply this knowledge in maintenance of biosafety, GLP, GMP in research lab, field & industry.
- 4. Acquire working knowledge on the risk assessment, containment, GMO labeling and transgenic field trials in the research.
- 5. Identify the various forms of IPR and understand the importance of patents in modern scientific and industrial research and discuss special application of patent laws in biotechnology with case studies.
- 6. Identify & discuss the potential dangers in Biotechnology and gain knowledge on safety aspects in food and Pharma industry and apply precautionary measures to avoid /overcome it.

Course Outcomes				Pro		-	Program Specific Outcomes (PSOs)								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	-	1	1	1	3	1	3	-	-	-	-	3	2	3
CO2	1	-	1	2	1	2	1	2	-	3	-	-	3	1	1
CO3	1	-	2	2	1	2	1	2	-	-	-	-	3	1	1
CO4	1	-	1	2	3	3	1	2	-	2	-	-	3	2	1
CO5	1	-	1	3	3	2	1	1	2	-	2	-	2	2	1
CO6	1	-	2	2	1	3	1	1	-	-	-	-	2	2	1

UBT514L L:T:P - 0:0:2 Total Hours/Week: 02 Credit: 01

CIE Marks: 50

SEE Marks: 50

	LIST OF EXPERIMENTS IN BIOINFORMATICS LABORATORY	28 Hrs.
1.	Bibliographic search from PUBMED, SCIRUS and MEDMINER	
2.	Sequence retrieval from Nucleic acid and Protein databases.	
3.	Sequence searches using BLAST – Retrieval of homologs, paralogs, orthologs, and Xenologs	
4.	Pair wise comparison of sequences – Analysis of parameters affecting alignment.	
5.	Multiple alignments of sequences and pattern determination using PROSITE	
6.	Evolutionary studies / Phylogenetic analysis – Analysis of parameters affecting trees.	
7.	Identification of functional sites in Genes / Genomes.	
8.	Secondary structure prediction of proteins and comparison with PDB.	
9.	Restriction mapping: Analysis of maps for suitable molecular biology experiment.	
10.	Primer Design: Factors affecting primer design.	
11.	PDB structure retrieval and visualization: Analysis of homologous structures.	
12.	Determination of ligand-protein interactions using SPDBV/ LIGPLOT	
	Superposition of structures – Calculation of RMSD.	
14.	Docking studies – Analysis of substrate / ligand binding using homologous structures	
	Reference Books *	
1.	Bioinformatics – Andreas D Boxevanis. Wiley Interscience, 1998.	
2.	, , , ,	
3.		
4.		_
5.		8.
6.	Bioinformatics – methods and applications: Genomics, proteomics and drug Discovery – s c	
	Rastogi, N. mendiratta & prastogi, phi, 2006.	
	Course Outcomes**	
Aft	er completion of the course student will be able to	
1.	Ability to Search literature and sequence databases	
	Ability to retrieve and search sequences from databases	
3.	Ability to align pair wise and multiple sequences	
4.	, , , , ,	
5.		
6.	Ability to docking and superimpose the structures	
	* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable	

Course					Prog	ramn	ne Ou	itcom	es				Programme Specific Outcomes			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3	
CO 1	3	3	3	-	3	1	-	3				3	3	3	1	
CO 2	3	3	3	-	3	1	-	-				3	2	3	1	
CO 3	3	3	2	2	3	1	1	-				3	3	3	1	
CO 4	3	3	2	-	3	-	1	-				3	2	3	2	
CO 5	3	3	2	1	3	1	-	2				3	3	3	2	
CO 6	3	3	3	2	3	1	-	1				3	2	3	1	

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

June

UBT515L		Credits: 01
L:T:P – 0:0:2	GENETIC ENGINEERING LABORATORY	CIE Marks: 50
Total Hours/Week: 02		SEE Marks: 50
LIST OF	EXPERIMENTS IN GENETIC ENGINEERING LABORAT	ORY
1. Transformation		
2. Blue white colony scree	ning	
3. Thermal denaturation c	f DNA	
4. Restriction Digestion		
5. Ligation Experiment.		
6. Southern Blotting – Aga	rose Gel Electrophoresis	
7. Electroblotting and ana	lysis	
8. Lyophilization of biolog	c samples (fluids, microbial samples)	
9. SOP for UV-Spectropho	tometer	
10. SOP for PCR		
11. PCR (Amplification with	specific primers)	
	Reference Books *	
1. Sambrook & Russell, (20	002), Molecular Cloning (3 rd Edition), Cold Spring Ha	arbor Lab.
2. Sadashiva and Manicka	m, (2017), Biochemical methods (2 nd Edition), W.H.	Freeman
	Course Outcomes**	
After completion of the course	e student will be able to	
7. Demonstrate proficiency i	n Transformation and screening of transformants.	
,	nermal denaturation to calculate Tm value.	
	ledge of restriction digestion and Ligation in the field	l of Biotechnology.
	n Electro-blotting and detection.	
11. Demonstrate understandi	-	incoving lab
12. Gain knowledge in commo	on and advanced laboratory practices in Genetic eng	ineering lab.

Course Outcomes				Pro	ograr	nme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	-	3	3	-	3	1	1	3	-	-	-	3	3	3	1	
CO2	-	3	3	-	3	1	1	-	-	-	-	3	2	3	1	
CO3	-	3	2	2	3	1	1	-	-	-	-	3	3	3	1	
CO4	-	3	2	-	3	-	1	-	-	-	-	3	2	3	2	
CO5	-	3	2	1	3	1	1	2	-	-	-	3	3	3	2	
CO6	-	3	3	2	3	1	1	1	-	-	-	3	2	3	1	

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE DEPARTMENT OF BIOTECHNOLOGY SCHEME OF TEACHING AND EXAMINATION 2021-2022

VII SEMESTER

SI. No.	Subject Code			H	ours/Week		Exa	minatio Marks	
NO.	Code	Subject Title	Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1	UBT704C	Economics and Plant Design	3	3	0	0	50	50	100
2	UBT715C	Downstream Processing Technology	3	2	2	0	50	50	100
3	UBT72XE	Elective-4	3	3	0	0	50	50	100
4	UBT73XE	Elective-5	3	3	0	0	50	50	100
5	UBT716H	Industrial Management and Entrepreneurship	3	3	0	0	50	50	100
6	UBT733N	Industrial Safety (Open Elective)	3	3	0	0	50	50	100
7	UBT711I	Industrial Internship	2	0	0	4	50	50	100
8	UBT710L	Bioseparation Techniques Lab	1	0	0	2	50	50	100
9	UBT717L	Food Analysis Techniques Lab	1	0	0	2	50	50	100
10	UBT701T	Technical Seminar	1	2	0	0	50	50	100
		Total	23	19	02	8	500	500	1000

Elective-4

UBT722E: Aquaculture & Marine Biotechnology

UBT723E: Dairy Biotechnology

UBT724E: Food Processing Technology

UBT725E: Protein Engineering and Drug Design **Elective-5**

UBT731E: Nanobiotechnology& Biomaterials

UBT732E: Computational Biology

UBT733E: Bioconjugative Technology

UBT734E: Food Biotechnology

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

pital investments ed capital investments including land, building, equipment and utilities, installation costs,(uipment, instrumentation, piping, electrical installation and other utilities),working capital investme anufacturing costs And plant overheads anufacturing Costs: Direct Production costs (including raw materials, human resources, maintena pair, operating supplies, power and other utilities, royalties, etc.), fixed charges Plant Ove ministration, safety and other auxiliary services, Conceptual numerical. UNIT–III at analysis to Analysis: Factors involved in project cost estimation, methods employed for the estimation of the estment. Estimation of working capital and preciation: different type of depreciation methods of and calculations, Conceptual numerical.	y factors I utilities, materials d control IO Hrs. including ents. ance and verheads: IO Hrs.
neral design considerations arketability of the product, availability of technology, raw materials, human resources, land and e characteristics, plant location, plant layout, plant operation and control, utilities, storage, in anding, materials and fabrication selection,.Waste disposal community factors. Safety and hazard easures. UNIT-II 1 pital investments 1 ed capital investments including land, building, equipment and utilities, installation costs, (uipment, instrumentation, piping, electrical installation and other utilities), working capital investmet anufacturing costs And plant overheads anufacturing Costs: Direct Production costs (including raw materials, human resources, maintena bair, operating supplies, power and other utilities, royalties, etc.), fixed charges Plant Oxministration, safety and other auxiliary services, Conceptual numerical. UNIT-II 1 tanalysis 1 tt Analysis: Factors involved in project cost estimation, methods employed for the estimation of the estimation of working capital and breceition: different type of depreciation methods of and calculations, Conceptual numerical. UNIT-IV 1 Ofitability Analysis 1 ethods for the evaluation of profitability. Return on original investment, interest rate of return, Cash agrams. Break-even analysis. Conceptual numerical.	materials d control LO Hrs. including ents. ance and verheads: LO Hrs.
arketability of the product, availability of technology, raw materials, human resources, land and arketability of the product, availability of technology, raw materials, human resources, land and arketability of the product, availability of technology, raw materials, human resources, land and arketability of the product, availability of technology, raw materials, human resources, land and anding, materials and fabrication selection,.Waste disposal community factors. Safety and hazard assures. UNIT–II 1 pital investments including land, building, equipment and utilities, installation costs,(uipment, instrumentation, piping, electrical installation and other utilities), working capital investmet anufacturing costs And plant overheads anufacturing Costs: Direct Production costs (including raw materials, human resources, mainten: pair, operating supplies, power and other utilities, royalties, etc.), fixed charges Plant Ow ministration, safety and other auxiliary services, Conceptual numerical. UNIT–II 1 it analysis 1 at analysis 1 tanalysis: Factors involved in project cost estimation, methods employed for the estimation of the estimation of working capital and 1 UNIT–IV 1 Ofitability Analysis 1 ethods for the evaluation of profitab	materials d control LO Hrs. including ents. ance and verheads: LO Hrs.
Implies and fabrication selection, Waste disposal community factors. Safety and hazard easures. Implies and fabrication selection, Waste disposal community factors. Safety and hazard easures. Implies and fabrication selection, Waste disposal community factors. Safety and hazard easures. Implies and fabrication selection, Waste disposal community factors. Safety and hazard easures. Implies an easures. Implies and fabrication selection, Waste disposal community factors. Safety and hazard easures. Implies an easures. Implies and the easures. Implies and fabrication selection and other utilities, installation costs, (augment, instrumentation, piping, electrical installation and other utilities), working capital investmeter anufacturing costs. And plant overheads anufacturing costs. Direct Production costs (including raw materials, human resources, maintena bair, operating supplies, power and other utilities, royalties, etc.), fixed charges Plant Ower ministration, safety and other auxiliary services, Conceptual numerical. Implies and the auxiliary services, Conceptual numerical. Implies and the auxiliary services, Conceptual numerical. Implies analysis Implies and other auxiliary services, Conceptual numerical. Implies analysis Implies and other auxiliary services, Conceptual numerical. Implies analysis Implies and the auxiliary services, Conceptual numerical. Implies analysis Implies and the auxiliary services, Conceptual numerical. Implies analysis Implies and the auxi	d control LO Hrs. including ents. ance and verheads: LO Hrs.
UNIT-II 1 pital investments ed capital investments including land, building, equipment and utilities, installation costs,(uipment, instrumentation, piping, electrical installation and other utilities),working capital investment anufacturing costs And plant overheads anufacturing costs: Direct Production costs (including raw materials, human resources, maintena coair, operating supplies, power and other utilities, royalties, etc.), fixed charges Plant Overministration, safety and other auxiliary services, Conceptual numerical. 1 UNIT-III 1 st analysis ts tanalysis: Factors involved in project cost estimation, methods employed for the estimation of the estimation of working capital and oreciation: different type of depreciation methods of and calculations, Conceptual numerical. 1 UNIT-IV 1 ofitability Analysis ethods for the evaluation of profitability. Return on original investment, interest rate of return, Cash grams. Break-even analysis. Conceptual numerical.	IO Hrs. including ents. ance and verheads: IO Hrs.
UNIT–II 1 pital investments ed capital investments including land, building, equipment and utilities, installation costs,(uipment, instrumentation, piping, electrical installation and other utilities),working capital investme anufacturing costs And plant overheads anufacturing costs: Direct Production costs (including raw materials, human resources, maintena coair, operating supplies, power and other utilities, royalties, etc.), fixed charges Plant Owministration, safety and other auxiliary services, Conceptual numerical. UNIT–III 1 Optication methods of and calculations, Conceptual numerical. UNIT–IV 2 Optitability Analysis	including ents. ance and verheads: LO Hrs.
pital investments ed capital investments including land, building, equipment and utilities, installation costs,(uipment, instrumentation, piping, electrical installation and other utilities),working capital investme anufacturing costs And plant overheads anufacturing Costs: Direct Production costs (including raw materials, human resources, maintene bair, operating supplies, power and other utilities, royalties, etc.), fixed charges Plant Ove ministration, safety and other auxiliary services, Conceptual numerical. UNIT-III t analysis t Analysis: Factors involved in project cost estimation, methods employed for the estimation of the estment. Estimation of working capital and preciation: different type of depreciation methods of and calculations, Conceptual numerical. UNIT-IV cofitability Analysis ethods for the evaluation of profitability. Return on original investment, interest rate of return, Cash agrams. Break-even analysis. Conceptual numerical.	including ents. ance and verheads: LO Hrs.
ed capital investments including land, building, equipment and utilities, installation costs,(uipment, instrumentation, piping, electrical installation and other utilities),working capital investme anufacturing costs And plant overheads anufacturing Costs: Direct Production costs (including raw materials, human resources, maintena pair, operating supplies, power and other utilities, royalties, etc.), fixed charges Plant Ove ministration, safety and other auxiliary services, Conceptual numerical. UNIT-III 1 1 at analysis t Analysis: Factors involved in project cost estimation, methods employed for the estimation of the estment. Estimation of working capital and oreciation: different type of depreciation methods of and calculations, Conceptual numerical. UNIT-IV 2 ofitability Analysis ethods for the evaluation of profitability. Return on original investment, interest rate of return, Cash agrams. Break-even analysis. Conceptual numerical.	ents. ance and verheads: LO Hrs.
UNIT-III 1 at analysis 1 at Analysis: Factors involved in project cost estimation, methods employed for the estimation of the estiment. Estimation of working capital and oreciation: different type of depreciation methods of and calculations, Conceptual numerical. 1 Dereciation: different type of depreciation methods of and calculations, Conceptual numerical. 1 Dofitability Analysis 1 ethods for the evaluation of profitability. Return on original investment, interest rate of return, Cash agrams. Break-even analysis. Conceptual numerical. 1 Gerence Books * 1	
analysis at analysis: Factors involved in project cost estimation, methods employed for the estimation of the estimation of working capital and oreciation: different type of depreciation methods of and calculations, Conceptual numerical. UNIT-IV : ofitability Analysis : ethods for the evaluation of profitability. Return on original investment, interest rate of return, Cash grams. Break-even analysis. Conceptual numerical. igrams. Break-even analysis. Conceptual numerical.	
Analysis: Factors involved in project cost estimation, methods employed for the estimation of the estimation of working capital and Direciation : different type of depreciation methods of and calculations, Conceptual numerical. UNIT-IV Difitability Analysis ethods for the evaluation of profitability. Return on original investment, interest rate of return, Cash grams. Break-even analysis. Conceptual numerical.	e capital
UNIT–IV ofitability Analysis ethods for the evaluation of profitability. Return on original investment, interest rate of return, Cash agrams. Break-even analysis. Conceptual numerical. Ference Books *	
ofitability Analysis ethods for the evaluation of profitability. Return on original investment, interest rate of return, Cash grams. Break-even analysis. Conceptual numerical. Ference Books *	10Hrs.
Poters and Timmerbaus, Plant Design and Economics for Chemical Engineers, 5 th Edition, McGra	ı flow
Hill. 2017	w
 Rudd and Watson (1987) Strategy of Process Engineering, Wiley. Poornima M C, "Entrepreneurship Development and Small Business Enterprises", Pearson educa 2006 	ation,
 Vasanth Desai, "Dynamics of Entrepreneurial Development & Management", Himalaya Publishin House.4th Edition, 2007. 	g
 House.4²¹¹ Edition, 2007. Khanka SS ," Entrepreneurship Development, S Chand & Co. Revised edition, 2007. Thomas W. Zimmer, Norman M. Scarborough, Essentials of Entrepreneurship and small Busine 	
Management, Pearson education,5 th Edition,2008.	cc
	SS
Irse Outcomes**	SS

ECONOMICS AND PLANT DESIGN

UBT704C L:T:P - 3:0:0

Total Hours/Week: 03

Credits: 03

CIE Marks: 50 SEE Marks: 50

- 1. Acquire knowledge in the design of a plant.
- 2. Conduct preliminary feasibility study of the plant design assigned.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

- 3. Estimate the cost analysis involved in the design of a chemical plant.
- 4. Analyze the project profitability and alternative investments for the selection of good investment projects
- 5. Develop entrepreneurs with substantial knowledge in engineering concepts.
- 6. Apply the knowledge of plant design and cost estimation in actual engineering problems.

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)				Program Specific Outcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	-	-	-	-	-	2	-	-	1	-	3	-	-	1	3	
CO2	-	-	-	-	-	2	-	-	1	-	3	-	-	1	3	
CO3	-	-	-	-	-	2	-	-	1	-	3	-	-	1	3	
CO4	-	-	-	-	-	2	-	-	1	-	3	-	-	1	3	
CO5	-	-	-	-	-	2	-	-	1	-	3	-	-	1	3	
CO6	-	-	-	-	-	2	-	-	1	-	3	-	-	1	3	

UBT715C

L:T:P – 2:2:0

Total Hours/Week: 04

SEE Marks: 50

UNIT-I	10 Hours
differential, density gradient (zonal and isopycnic).	ucts; physical, entrifugation, entrifugation-
UNIT–II	10 Hrs.
Primary Recovery Operations Process involved in liquid-liquid extraction, solid-liquid extraction, ammonium sulphate Precipitation of proteins and nucleic acids by solvents and polyethylene glycol, dialysis, e ultrafiltration (Removal of insolubles by filtration), reverse osmosis, drying and lyophilization based separations theory, design and configuration of membrane separation equipment.	lectrodialysis,
UNIT–III	10 Hrs.
Chromatography Principles of chromatographic seperations, Classification of chromatography- plain chromatography, Paper chromatography - Single dimensional (Ascending and Descending, ra dimensional) chromatography, partition coefficient, retention factor, Thin layer chromatograph Chromatography, Adsorption Chromatography: Adsorption column chromatography, Ic Chromatography: cation Exchange and anion Exchange chromatography. Gel Filtration Chro Affinity Chromatography, High Performance liquid chromatography, NP-HPLC and RP-HPLC. UNIT-IV	ny, Gas liquid on Exchange
	101113.
Electrophoresis Electrophoresis principles, factors affecting electrophoresis mobility, Moving boundary electrop Electrophoresis, Gel Electrophoresis, Continuous Gel electrophoresis, Disc Gel electrophoresis, Electrophoresis, Capillary Electrophoresis,Cellulose Acetate, Starch Gel, Native and SDS-PAGE, electrophoresis, Isoelectric focusing, Immunoelectrophoresis, ELISA, Flow cytometry. Downstream Processes: Case studies (production)-DSP flowsheets for penicillin, insulin, amino acid, monoclonal antibody.	Agarose Gel High voltage
Reference Books *	
 B.Sivasankar, Bioseparations-2010 Principles and techniques Kindle edition,PHI Publishers, Upadhay and Nath, 2010,Biophysical chemistry principles and Technques, Himalaya Publish 3rd edition. 	ning House,
 P.A., Cussier E. and Wei ,Shan Hu. 2008. Bioseparations - Downstream processing for biote Belter, Wiley Interscience Pub, NPTEL Source material 	chnology by
5. Palanivelu, 2005 Lab manual for separation Techniques.	
Course Outcomes**	

1. Identify the basic separation unit operation in DSP like membrane separation, enrichment operation, product recovery and various resolutions and fractionation techniques.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

- 2. Interpret and analyze the industrial fermentation processes.
- 3. Apply the knowledge in identifying various pharma and R&D sections.
- 4. Analyse the details of experimentation pertaining to chromatography and electrophoresis.
- 5. Understand analyse and apply the techniques in various tests involved in finding out purity of biological.
- **6.** Apply the knowledge in identifying various biochemicals using advanced purifications like HPLC and to demonstrate DSP flow sheets.

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)			_	gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	2	-	2	1	-	-	-	-	-	1	2	1	1
CO2	2	-	2	-	3	2	-	-	-	-	-	1	2	1	1
CO3	1	1	1	-	2	1	-	-	-	-	-	1	2	1	2
CO4	2	-	2	-	2	2	-	-	-	-	-	1	2	1	1
CO5	2	1	1	-	3	1	-	-	-	-	-	1	2	1	2
CO6	1	-	1	-	2	1	-	-	-	-	-	2	2	1	1

UBT724E

L:T:P – 3:0:0

Credits: 03 CIE Marks: 50 SEE Marks: 50

10 Hours

11 Hrs.

Total Hours/Week: 03

Introduction

Constituents of food, soluble fibres, protein rich foods, popular fats and oils in foods, Food flavours, Browning reactions and its effects. Intrinsic and extrinsic parameters of foods, effect of inhibitors, pH and temperature.

Minerals in foods. Aroma compounds in foods. Food additives, Vitamins, amino acids, Sweeteners, Food colours. Toxic-trace elements in food.

Detection of Microorganisms

Culture, Microscopic and Sampling Methods, Conventional; SPC, Membrane Filters, Microscope colony Counts, Agar Droplets, Dry Films, Most probable Numbers (MPN), Dyereduction, Roll Tubes, Direct Microscopic Count (DMC), Microbiological Examination of surfaces, Air Sampling, Metabolically Injured Organisms, Enumeration and Detection of Food-borne Organisms.

Dairy products

Composition of milk, Sterilization of milk (Pasteurization and UHT), Cheese production, Acidophilus milk Yoghurt, Kumiss and Kefir. Marketing scope of dairy & amp; food products Fruit and vegetable processing: Jam, jelly, Juice, squash, wine, pickles and sauerkraut.

Food Spoilage Preservation

The Role and Significance of Microorganisms, Primary Sources of Microorganisms found in Foods Synopsis of common borne bacteria, Molds; Yeasts. Microbial Spoilage of Vegetables, Fruits, Fresh and Processed Meats, Poultry, and Seafood. Spoilage of Miscellaneous Foods.

Food Preservation

Principles Underlying in spoilage and preservation, Application, Effect and Legal Status of Food Irradiation, Food Preservation with Low Temperatures, High Temperatures and Drying.

Food Industry

Characteristics of Food Industry. Nutritional food supplements. Food packaging, New trends in packing, edible films. Factors influencing food product development, marketing, and promotional strategies, risks and benefits of food industry.

Food Engineering

Properties of fluid foods, Measurement of rheological parameters .Thermal properties of frozen foods. Food freezing equipment, storage of frozen foods. Food dehydration: Freeze Dehydration Calculation of drying times. Food waste management.

Reference Books *

- 1. Sunetra Roady, 2007, Food Science & amp; Nutrition, Oxford University Press.
- 2. William Frazier and Westhoff D.C, 2005, Food microbiology 4th Edn, TATA McGraw Hill Pub

UNIT-IV

- 3. James M.Jay, 2005.Modern Food Micro-Biology, CBS Publishers.
- 4. K. Vijay Ramesh, 2007, Food Microbiology by MJP Publishers.
- 5. Potter N.N. and Joseph Hotchkiss, 1996, Food Science, 5th Edn, CBS Pub,

12 Hrs.

9 Hrs.

UNIT-I

UNIT-II

UNIT-III

Principal, Basaveshwar Engineering College. BAGALKOT-587–102.

June

- 1. Ability to understand about basic constituents of food
- 2. Ability to analyse the techniques involved in detection of microbes in food industry
- 3. Ability to have idea about Dairy , fruits and vegetable processed products and production
- 4. Ability to be aware of different food spoilage and preservation techniques
- 5. Ability to analyse the Characteristics of food industry and scope
- 6. Ability to comprehend the concepts in food Engineering used in preservation.

Course Outcomes				Pro	ograi	nme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	2	-	2	1	-	-	-	-	-	1	2	1	1
CO2	2	-	2	-	3	2	-	-	-	-	-	1	2	1	1
CO3	1	1	1	-	2	2	-	-	-	-	-	1	2	1	2
CO4	2	-	2	-	2	1	-	-	-	-	-	1	2	1	1
CO5	2	1	1	-	3	1	-	-	-	-	-	1	2	1	2
CO6	1	-	1	-	2	2	-	-	-	-	-	2	2	1	1

UBT722E

L:T:P – 3:0:0

Total Hours/Week: 03

UNIT-I

10 Hours

Aquatic environment

Major physical and chemical factors (light, temperature, gases, nutrients). Aquatic biota: phytoplankton, zooplankton, benthos, periphyton, macrophytes, fish and other animals. Production & Nutrient dynamics in lakes, rivers, estuaries and wetlands. Eutrophication and water pollution: monitoring and control conservation and management of lakes, rivers and wetlands. Importance of coastal aquaculture- Design and construction of aqua farms, Criteria for selecting cultivable species. Culture systems – extensive, semi intensive and intensive culture practices

Aqua culture

Classification and Characteristics of Arthropoda. Crustacean characteristic key to important species of Prawns and Shrimps, General biology, of – Shrimp and Prawn, Finfish, Marine and freshwater fish. Preparation, culture and utilization of live food organisms, phytoplankton, zooplankton cultures, quality evaluation of Cyst, hatching and utilization, culture and cyst production.

UNIT–II

10 Hrs.

Aquaculture engineering and techniques

Principles and criteria for site selection; multi-design, layout plan for prawn, shrimp and fish hatchery; design, ay-out plan and pond construction for grow- out production, design and construction of feed mill and installation of machineries. Chromosome manipulation in aquaculture - hybridization, ploidy induction, gynogenesis, androgenesis and sex reversal in commercially important fishes. Application of microbial biotechnology culture bioaugmentation, bioremediation. in ponds, nutrient cvcling. and biofertilization.Probiotics – imunostimulants. Tools for disease diagnosis in cultivable organisms Enzyme immuno assays - Dot immunobinding assay - Western blotting - Latex agglutination test - Monoclonal antibodies - DNA based diagnosis. Cryopreservation techniques.

UNIT–III

10 Hrs.

Marine environment

Biological Oceanography: The division of the marine environment – benthing, pelagic, batuyal, littoral. Ocean waters as biological environment. Distribution and population of plants and animals. Marine ecology and fisheries potential. Effects of pollution on marine life. Geological and geophysical Oceanography: geophysical and geological processes. Ocean basin rocks and sediments.

Marine microbiology

Biology of micro-organisms used in genetic engineering (Escherichia coil, Rhizobium sp., Agrobacterium tumefaciens, Saccharomyces cerevisiae, phage lambda, Nostoc, Spirulina, Aspergillus, Pencillium and Streptomyces). Methods of studying the marine micro-organisms collection, enumeration, isolation, culture & identification based on morphological, physiological and biochemical characteristics. Preservation of marine microbes, culture collection centre (ATCC, IMTECH, etc.). Microbial nutrition and nitrogen fixation.Seafood microbiology - fish & human pathogens. Indicator of Pollution - faecai coliforms - Prevention & control.

UNIT-IV

10 Hrs.

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

Marine biotechnology and pharmacology

Physical, Chemical and Biological aspects of marine life. Air – Sea interaction – Green house gases (CO2 and Methane). Marine pollution-major pollutants (heavy metal, pesticide, oil, thermal, radioactive, plastics, litter and microbial). Biological indicators and accumulators: Protein as biomarkers, Biosensors and biochips. Biodegradation and Bioremediation. Separation, purification and bioremoval of pollutants. Biofouling - Biofilm formation, Antifouling and Anti boring treatments. Corrosion Process and control of marine structures.

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

Biosafety – special characteristics of marine environment that bear on biosafety. Ethical and moral issues food health, and environmental safety concerns. Medicinal compounds from marine flora and fauna - marine toxins –antiviral, antimicrobial. Extraction of crude drugs, screening, isolation, purification and structural characterization of bioactive compounds.

Reference Books *

- 1. Kirchman, D.L,. Microbial ecology of the oceans. Wiley liss, New York, 542 pp,2005
- 2. Kenneth, C. Hingham and Leonard Hill, 1969. The comparative endocrinology of the invertebrates. Edward Arnold Ltd.
- 3. Farming the edge of the sea. Fishing News Ltd. London.
- 4. Finger man, M.. Recent advances in Marine Biotechnology. Vol. 4,2000
- 5. Kenneth, B.D., 2000. Environmental impacts of Aquaculture. CRC. pp. 214,2000

Course Outcomes**

- 1. Ability to understand the importance of coastal aquaculture.
- 2. Ability to know the different Culture systems.
- 3. To analyse the cryopreservation techniques.
- 4. To understand the Seafood microbiology.
- 5. To understand the applications of marine biology.
- 6. Ability to extract crude drugs and find the bioactive compounds.

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	-	2	-	1	1	2	2	-	-	-	1	2	1	1
CO2	1	-	2	-	-	2	2	3	-	-	-	1	2	1	2
CO3	-	-	1	1	2	-	2	2	-	-	-	1	2	1	-
CO4	2	-	2	-	-	1	2	2	-	-	-	1	2	1	-
CO5	-	-	1	2	2	-	3	3	-	-	-	1	2	1	1
CO6	1	-	1	-	-	2	2	2	-	-	-	2	2	1	-

UBT723E		Credits: 03
L:T:P – 3:0:0	DAIRY BIOTECHNOLOGY	CIE Marks: 50
Total Hours/Week: 03		SEE Marks: 50

UNIT-I

UNIT-II

Dairy Industry and Microbiology

Overview of dairy industry, Characteristics of dairy Industry. Manufacturing & processing of dairy products, effect of processing on constituents and methods of evaluation of dairy products. Morphological and biochemical characteristics of important groups of milk microbes and their classification i.e.psychrotrophs, mesophiles, thermodurics, and thermophiles. Impact of various stages like milking, chilling, storage and transportation on microbial quality of milk, Direct and indirect rapid technique for assessment of microbial quality of milk, Direct and toxic infection caused by milk borne pathogens. Microbiological changes in bulk refrigerated raw milk; Mastitis milk: organisms causing mastitis, detection of somatic cell count (SCC). Role of microorganisms in spoilage of milk Significance of antimicrobial substances naturally present in milk (responsible for its nutraceutical properties): immunoglobulin, lactoferin, Lysozymes

Dairy biotechnology

Genetic engineering of bacteria and animals intended for dairy-based products: DNA cloning. protoplast fusion & cell culture methods for trait improvement with instances cited. Enzymes in dairy industry & production by whole cell immobilization. Biotechnology of dairy effluent treatment. Ethical issues relating to genetic modification of dairy microbes & milk-yielding animals.

Dairy engineering

Sanitization: Materials and sanitary features of the dairy equipment. Sanitary pipes and fittings, Description, working and maintenance of can washers, bottle washers. CIP cleaning and designing of system. Homogenization, Pasteurization, sterilization septic packaging and equipment. Filling Operation: Principles and working of different types of bottle filters and capping machine, pouch filling machine maintenance.

0		
	UNIT–III	10 Hrs.

Dairy process engineering

Evaporation: Basic principles of evaporators, Different types of evaporators used in dairy industry, Drying: Introduction to principle of drying, Equilibrium moisture constant, bound and unbound moisture. Fluidization Mechanization and equipment used in manufacture of indigenous dairy products, Butter and Ghee making machine, Ice-cream and Cheese making equipments. Membrane Processing: Ultra filtration, Reverse Osmosis and electro dialysis in dairy processing, membrane construction & maintenance for electro-dialysis & ultrafiltration, Ultra filtration of milk, Effect of milk constituents on operation.

Dairy plant design and layout

Introduction of Dairy Plant design and layout. Type of dairies, perishable nature of milk, reception flexibility. Classification of dairy plants, selection of site for location. Dairy building planning, Process schedule, basis of dairy layout, General points of considerations for designing dairy plant, floor plant types of layouts, service accommodation, single or multilevel design.

UNIT-IV

10 Hrs.

10 Hours

10 Hrs.

Quality and safety monitoring in dairy industry

Current awareness on quality and safety of dairy foods; consumer awareness and their demands for safe foods; role of codex alimentations commission (CAC) in harmonization of international standards; quality (ISO 9001:2000) and food safety (HACCP) system National and international food regulatory standards; their role in the formulation of standards for controlling the quality and safety of dairy foods. Good Hygiene Practices (GHP): Rapid assessment of dairy food for microbial and non-microbial contaminants Quality of water and Quality of air & personnel hygiene.

> Principal, Basaveshwar Engineering College BAGALKOT-587 102.

By products technology

Status, availability and utilization of dairy by-products in India and abroad, associated economic and pollution problems. Physico-chemical characteristics of whey, butter milk and ghee residue, by-products from skim milk such as Casein; Whey processing & utilization of products generated from whey.

Reference Books *

- 1. Diary Science & Technology Handbook (Vols. 1-3). Ed by Hui, Y.H, Wiley Publishers, 2007
- 2. Handbook of Farm, Dairy & Food Machinery Myer Kutz- Andrew Publishers, 2005
- 3. Diary Microbiology Handbook (3rd Ed). Robinson, R.K., Wiley Publishers, 2001
- 4. Comprehensive Biotechnology (Vol. 6) Ed N.C Gautam- Shree Pblns, 2002.
- 5. General Microbiology (Vol. 2) Powar & Daginawala- Himalaya Publishers, 2005
- 6. Milk composition, production & biotechnology (Biotechnology in Agriculture Series). CABI Publishers,2005

Course Outcomes**

- 1. Able to manufacture & processing of dairy products.
- 2. Ability to know the ethical issues in dairy.
- 3. Ability to understand principles of evaporators.
- 4. Ability to plan the Plant design and layout.
- 5. will be aware of quality and safety of dairy foods.
- 6. Ability to know the regulatory standards.

Course Outcomes			•	Pro	ograi	nme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)				
	1	1 2 3 4 5 6 7 8 9 10 11 12								1	2	3					
CO1	1	-	2	-	1	1	2	2	-	-	-	1	2	1	1		
CO2	1	-	2	-	-	2	2	3	-	-	-	1	2	1	2		
CO3	-	-	1	1	2	-	2	2	-	-	-	1	2	1	-		
CO4	2	-	2	-	-	1	2	2	-	-	-	1	2	1	-		
CO5	-	-	1	2	2	-	3	3	-	-	-	1	2	1	1		
CO6	1	-	1	-	-	2	2	2	-	-	-	2	2	1	-		

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT725E

L:T:P – 3:0:0

Total Hours/Week: 03

UNIT-II

UNIT-III

10 Hours

10 Hrs.

10 Hrs.

Structure of proteins

Overview of protein structure, PDB, structure based classification, databases, visualization tools, structure alignment, domain architecture databases, and protein-ligand interactions.

Protein structure prediction

Primary structure and its determination, secondary structure prediction and determination of motifs, profiles, patterns, fingerprints, super secondary structures, protein folding pathways, tertiary structure, quaternary structure, methods to determine tertiary and quaternary structure, post translational modification.

Protein engineering and design

Methods of protein isolation, purification and quantitation; large scale synthesis of proteins, design and synthesis of peptides, use of peptides in biology, methods of detection and analysis of proteins. Protein database analysis, methods to alter primary structure of proteins, examples of engineered proteins, protein design, principles and examples.

Molecular modeling

Constructing an Initial Model, Refining the Model, Manipulating the Model, Visualization. Structure Generation or Retrieval, Structure Visualization, Conformation Generation, Deriving Bioactive Conformations, Molecule Superposition and Alignment, Deriving the Pharmacophoric Pattern, Receptor Mapping, Estimating Biological Activities, Molecular Interactions: Docking, Calculation of Molecular Properties, Energy Calculations (no derivation), Examples of Small Molecular Modeling Work, Nicotinic Ligands, Sigma Ligands, Antimalarial Agents.

Insilico drug design

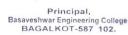
Generation of Rational Approaches in Drug Design, Molecular Modeling: The Second Generation, Conceptual Frame and Methodology of Molecular Modeling, The Field Currently Covered, Importance of the "Bioactive Conformation", Molecular Mimicry and Structural Similarities, Molecular Mimicry, Structural Similarities and Superimposition Techniques, Rational Drug Design and Chemical Intuition, An Important Key and the Role of the Molecular Model, Limitations of Chemical Intuition Major Milestones and Future Perspectives.

Computer assisted new lead design

Introduction, Basic Concepts, Molecular Recognition by Receptor and Ligand Design, Active Conformation, Approaches to Discover New Functions, Approaches to the Cases with known and unknown receptor structure.

UNIT-IV

10 Hrs.



Docking methods

Program GREEN Grid: Three -Dimensional Description of Binding Site Environment and Energy Calculation, Automatic Docking Method, Three-Dimensional Database Search Approaches, Automated Structure Construction Methods, Structure Construction Methods with known Three-Dimensional Structure of the Receptor, Structure Construction in the case of Unknown Receptor Structure. Scope and Limitations, Points for Consideration in Structure, Construction Methods, Handling of X-Ray Structures of Proteins, Future Perspectives, Types of programs available for molecular modeling-scope and limitations-interpretation of results.

Computer - assisted drug discovery

The Drug Development Process, Introduction, The Discovery and Development Process, New Lead Discovery

Strategies, Composition of Drug Discovery Teams, The Practice of Computer-Assisted Drug Discovery (CADD), Current Practice of CADD in the pharmaceutical Industry, Management Structures of CADD Groups, Contributions and Achievements of CADD Groups, Limitations of CADD Support, Inherent Limitations of CADD Support, State of Current Computational Models, Software and Hardware Constraints.

Reference Books *

- 1. Bioinformatics Methods & Applications: Genomics, Proteomics & Drug Discovery, S C Rastogi, Mendiratta & P Rastogi, PHI,4th Edition, 2013
- 2. Moody P.C.E. and A.J. Wilkinson Protein Engineering, IRL Press, Oxford, 3rd Edition, 2010.
- 3. Creighton T.E. Proteins, Freeman W.H. Second Edn, 1993.
- 4. Branden C. and Tooze R. Introduction of protein structure, Garland, 1993.
- 5. The molecular modeling perspective in drug design by N Claude Cohen, 2008, Academic Press.

Course Outcomes**

- 1. Ability to study protein structure prediction and protein engineering and design
- 2. Able to understand molecular modeling
- 3. Able to know computer assisted new lead design
- 4. Able to study docking methods and computer assisted drug discovery

Course Outcomes				Pro		Program Specific Outcomes (PSOs)									
	1	1 2 3 4 5 6 7 8 9 10 11 12										1	2	3	
CO1	1	-	2	-	1	1	2	2	-	-	-	1	2	1	1
CO2	1	-	2	-	-	2	2	3	-	-	-	1	2	1	2
CO3	-	-	1	1	2	-	2	2	-	-	-	1	2	1	-
CO4	2	-	2	-	-	1	2	2	-	-	-	1	2	1	-

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT731E	

L:T:P – 3:0:0

Total Hours/Week: 03

Credits: 03 CIE Marks: 50 SEE Marks: 50

UNIT-I	10 Hrs.
Introduction to nanotechnology: A Brief History of the Nano particles : Bottom-Up versus Top-Down; What Is Nanobiotechnolog on nanofabrication, nanolithography, nanotubes, buckyballs, structure-property relationships	gy.Discussions in materials, atomic force allenge. 10 Hrs.
moduli, sterilization and disinfections of polymeric materials. Biocompatibility of polymer modified glycosaminoglycans, heparin like substances from nonglycosaminoglycan polysac microbial glycosaminoglycan, surface immobilized heparins.	s, chemically
UNIT–III	10 Hrs.
Synthetic polymers: Polymers in biomedical use, polyethylene and polypropylene, perfluorinated polymers, acry hydrogels, polyurethanes, polyamides, biodegradable synthetic polymers, silicone rub polymerization, micro-organisms in polymeric implants, polymer sterilization. UNIT–IV	
	10 115.
Biocompatibility: Definition, Wound healing process-bone healing, tendon healing. Material response: Fu Degradation of materials in vivo. Host response: Tissue response to biomaterials . Testing Methods of test for biological performance-In vitro implant tests, In vivo implant test methods. Medical devices: Polyurethane elastomers, applications of polymers in medicine and surgery. Skin graft polymers, implant materials, metals and alloys.	of implants:
Reference Books *	
 B.Vishwanath (2011). "Nano Materials" Published by Narosa Publishing House Pvt. Ltd., New 2. Mark Ratner and Daniel Ratner (2003). "Nanotechnology: A Gentle Introduction to Ne Pearson Ecducation Ltd. K Eric Drexler (1993). "Unbounding the future" Quill. Stephen Lee and Lynn M Savage (2010). "Biological molecules in Nanotechnology". 	
Course Outcomes**	

After completion of the course student will have the

- 1. Ability to explain the characterization techniques of nanotechnology.
- 2. Ability to understand the importance of nano-particles in drug delivery system.
- 3. Ability to understand the importance of biopolymers.
- 4. Ability to differentiate biopolymer and synthetic polymer.
- 5. Ability to understand the importance of biocompatibility.
- 6. Ability to apply the methods to test the implants and use in medical devices.

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes															cific SOs)
	1 2 3 4 5 6 7 8 9 10 11 12											1	2	3	
CO1	2	3	3	-	-	1	2	-	-	-	-	-	2	2	1
CO2	1	2	3	-	-	1	-	-	-	-	-	-	3	-	-
CO3	2	2	3	-	-	2	-	-	-	-	-	-	2	2	1
CO4	3	3	3	-	-	2	-	-	-	-	-	-	2	1	1
CO5	3	3	3	-	-	1	-	-	-	-	-	1	2	-	_
CO6	2	3	3	-		3	3	-	-	-		-	3	1	-

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

Total Hours/Week: 03		SEE Marks: 50
	UNIT-I	10 Hours
Molecular sequences, Genom databases: Protein and Nucleo distance and string similarity,	biology and sequence analysis e sequencing: pipeline and data, Next generation otide databases, Sequence Alignment, Dynamic Pro Local and Global Alignment, Needleman Wunsch programs, FASTA algorithm, Functional Annotatio e alignment, Applications.	pgramming for computing edi Algorithm, Smith Watermar
	UNIT–II	10 Hrs.
JPGMA, Neighbour joining, Bootstrapping. Protein structure, modelling an Protein Structure Basics, Visu	, Distance and Character based methods for phy Ultrametric and Min ultrametric trees, Parsimon nd simulations alization, Prediction of Secondary Structure and ⁻ nics, Molecular Docking principles and applica	onous trees, Additive trees Tertiary Structure, Homolog
	UNIT-III	10 Hrs.
Machine learning techniques: Secondary Structure Predictior		y and its applications in whole ysis, informatics in Genomic
	UNIT-IV	10 Hrs.
File handling, Programs to hand Laboratory Demonstrations fo Biological Databases, Sequence alignment, Phylogenetics softw	flow constructs, Pattern Matching, String manipulat dle biological data and parse output files for interpre r e alignment: BLAST family of programs, FASTA, Clust vare, Homology Modeling and Model evaluation, Au ne finding software, Programs in PERL.	etation tal W for multiple sequence
1. David W. Mount Bioinfor	matics: Sequence and Genome Analysis, Cold Spring	g Harbor Laboratory
 Press, Second Edition, 20 Arthur M. Lesk, Introduct Baldi, P., Brunak, S. Bioin Baxevanis A.D. and Oulle John Wiley, 2002 Durbin, R. Eddy S., Krogh 		008. ., East West Press, 2003 s and Proteins, 2nd ed.,
Course Outcomes**		

CFF Marks: 50

Credits: 03

CIE Marks: 50

COMPUTATIONAL BIOLOGY

UBT732E

L:T:P – 3:0:0 Total Hours/Week: 03

1. Ability to know the sequence analysis.

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

June

- 2. Ability to understand and analyze the multiple sequence alignment and applications.
- 3. Ability to understand the phylogenetics.
- 4. Ability to analyze the molecular dynamics simulations.
- 5. Ability to understand perl bioinformatics.
- 6. Ability to differentiate prokaryote and eukaryote gene finding software.

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)				
	1	1 2 3 4 5 6 7 8 9 10 11 12								1	2	3					
CO1	1	-	2	-	1	1	2	-	-	-	-	1	2	1	-		
CO2	1	-	2	-	-	2	2	-	-	-	-	1	2	1	-		
CO3	-	-	1	1	2	-	-	-	-	-	-	1	1	1	-		
CO4	2	-	2	-	-	1	2	-	-	-	-	1	-	1	-		
CO5	-	-	1	2	2	-	-	-	-	-	-	1		1	-		
CO6	1	-	1	-	-	2	2	-	-	-	-	2	2	1	-		

UNIT-I	10 Hours
Bioconjugative technology	
Modification of Amino Acids, Peptides and Proteins – Modification of sugars, polysac	charides and
glycoconjugates – modification of nucleic acids and oligonucleotides.	
UNIT–II	10 Hrs.
Chemistry of active groups	
Amine reactive chemical reactions – Thiol reactive chemical reactions – carboxylate rea	
reactions – hydroxyl reactive chemical reactions – aldehyde and ketone reactive chemic	al reactions
Photoreactive chemical reactions.	
Bioconjugate reagents	T.::f
Zero length cross linkers – Homobifunctional cross linkers – Heterobifunctional cross linkers	- Trifunction
cross linkers – Cleavable reagent systems – tags and probes. UNIT–III	10 Hrs.
	10 115.
Enzyme and nucleic acid modification and conjugation Properties of common enzymes – Activated enzymes for conjugation – biotinylated enzyme	c _ chomical
modification of nucleic acids – biotin labeling of DNA- enzyme conjugation to DNA – Fluorescent of	
inconcation of nucleic actos – bloth labeling of DNA- enzyme conjugation to DNA – Profescent of	JI DINA.
LINIT-IV	10 Hrs
	10 Hrs. - immunotox
Bioconjugate applications Preparation of Hapten-carrier Immunogen conjugates - antibody modification and conjugation - conjugation techniques – liposome conjugated and derivatives- Colloidal – gold-labeled	
Bioconjugate applications Preparation of Hapten-carrier Immunogen conjugates - antibody modification and conjugation - conjugation techniques — liposome conjugated and derivatives- Colloidal — gold-labeled modification with synthetic polymers.	- immunotox
Bioconjugate applications Preparation of Hapten-carrier Immunogen conjugates - antibody modification and conjugation - conjugation techniques — liposome conjugated and derivatives- Colloidal — gold-labeled modification with synthetic polymers. Reference Books *	- immunotox
Bioconjugate applications Preparation of Hapten-carrier Immunogen conjugates - antibody modification and conjugation - conjugation techniques — liposome conjugated and derivatives- Colloidal — gold-labeled modification with synthetic polymers.	- immunotox
 Bioconjugate applications Preparation of Hapten-carrier Immunogen conjugates - antibody modification and conjugation - conjugation techniques – liposome conjugated and derivatives- Colloidal – gold-labeled modification with synthetic polymers. Reference Books * Bioconjugate Techniques, G.T. Hermanson, Academic Press, 2 nd edition 2008 	- immunotox
 Bioconjugate applications Preparation of Hapten-carrier Immunogen conjugates - antibody modification and conjugation - conjugation techniques – liposome conjugated and derivatives- Colloidal – gold-labeled modification with synthetic polymers. Reference Books * Bioconjugate Techniques, G.T. Hermanson, Academic Press, 2 nd edition 2008 Bioconjugate techniques, Greg T Hermanson, academic Press, Global store, 2016 A Text book of biophysics by Dr R.N. Roy, UBS publishers, 2001 Bioconjugative Chemistry by Vincent M Rotello, American Chemical society, 2016 	- immunotox
 Bioconjugate applications Preparation of Hapten-carrier Immunogen conjugates - antibody modification and conjugation - conjugation techniques – liposome conjugated and derivatives- Colloidal – gold-labeled modification with synthetic polymers. Reference Books * Bioconjugate Techniques, G.T. Hermanson, Academic Press, 2 nd edition 2008 Bioconjugate techniques, Greg T Hermanson, academic Press, Global store , 2016 A Text book of biophysics by Dr R.N. Roy, UBS publishers, 2001 	- immunotox
 Bioconjugate applications Preparation of Hapten-carrier Immunogen conjugates - antibody modification and conjugation - conjugation techniques – liposome conjugated and derivatives- Colloidal – gold-labeled modification with synthetic polymers. Reference Books * Bioconjugate Techniques, G.T. Hermanson, Academic Press, 2 nd edition 2008 Bioconjugate techniques, Greg T Hermanson, academic Press, Global store, 2016 A Text book of biophysics by Dr R.N. Roy, UBS publishers, 2001 Bioconjugative Chemistry by Vincent M Rotello, American Chemical society, 2016 Bioconjugate techniques, Greg T Hermanson, academic Press, Global store , 2017 	- immunotox
 Bioconjugate applications Preparation of Hapten-carrier Immunogen conjugates - antibody modification and conjugation - conjugation techniques – liposome conjugated and derivatives- Colloidal – gold-labeled modification with synthetic polymers. Reference Books * Bioconjugate Techniques, G.T. Hermanson, Academic Press, 2 nd edition 2008 Bioconjugate techniques, Greg T Hermanson, academic Press, Global store , 2016 A Text book of biophysics by Dr R.N. Roy, UBS publishers, 2001 Bioconjugate techniques , Greg T Hermanson, academic Press ,Global store , 2016 	- immunotox
 Bioconjugate applications Preparation of Hapten-carrier Immunogen conjugates - antibody modification and conjugation - conjugation techniques – liposome conjugated and derivatives- Colloidal – gold-labeled modification with synthetic polymers. Reference Books * Bioconjugate Techniques, G.T. Hermanson, Academic Press, 2 nd edition 2008 Bioconjugate techniques , Greg T Hermanson, academic Press ,Global store , 2016 A Text book of biophysics by Dr R.N. Roy,UBS publishers, 2001 Bioconjugative Chemistry by Vincent M Rotello, American Chemical society, 2016 Bioconjugate techniques , Greg T Hermanson, academic Press ,Global store , 2017 	- immunotox
 Bioconjugate applications Preparation of Hapten-carrier Immunogen conjugates - antibody modification and conjugation - conjugation techniques – liposome conjugated and derivatives- Colloidal – gold-labeled modification with synthetic polymers. Reference Books * Bioconjugate Techniques, G.T. Hermanson, Academic Press, 2 nd edition 2008 Bioconjugate techniques, Greg T Hermanson, academic Press, Global store, 2016 A Text book of biophysics by Dr R.N. Roy, UBS publishers, 2001 Bioconjugate techniques, Greg T Hermanson, academic Press, Global store, 2016 Bioconjugative Chemistry by Vincent M Rotello, American Chemical society, 2016 Bioconjugate techniques, Greg T Hermanson, academic Press, Global store, 2017 Course Outcomes** Able to understand modification of nucleic acids and oligonucleotides. 	- immunotox
 Bioconjugate applications Preparation of Hapten-carrier Immunogen conjugates - antibody modification and conjugation - conjugation techniques – liposome conjugated and derivatives- Colloidal – gold-labeled modification with synthetic polymers. Reference Books * Bioconjugate Techniques, G.T. Hermanson, Academic Press, 2 nd edition 2008 Bioconjugate techniques , Greg T Hermanson, academic Press ,Global store , 2016 A Text book of biophysics by Dr R.N. Roy,UBS publishers, 2001 Bioconjugate techniques , Greg T Hermanson, academic Press ,Global store , 2016 Bioconjugative Chemistry by Vincent M Rotello, American Chemical society, 2016 Bioconjugate techniques , Greg T Hermanson, academic Press ,Global store , 2017 Course Outcomes** Able to understand modification of nucleic acids and oligonucleotides. Ability to know the chemistry of active groups. 	- immunotox
 Bioconjugate applications Preparation of Hapten-carrier Immunogen conjugates - antibody modification and conjugation - conjugation techniques – liposome conjugated and derivatives- Colloidal – gold-labeled modification with synthetic polymers. Reference Books * Bioconjugate Techniques, G.T. Hermanson, Academic Press, 2 nd edition 2008 Bioconjugate techniques , Greg T Hermanson, academic Press, Global store , 2016 A Text book of biophysics by Dr R.N. Roy,UBS publishers, 2001 Bioconjugate techniques , Greg T Hermanson, academic Press ,Global store , 2016 Bioconjugate techniques , Greg T Hermanson, academic Press ,Global store , 2017 Course Outcomes** Able to understand modification of nucleic acids and oligonucleotides. Ability to know the chemistry of active groups. To analyse the bioconjugate reactants. 	- immunotox

Total Hours/Week: 03

UBT733E

L:T:P - 3:0:0

Credits: 03 CIE Marks: 50

SEE Marks: 50

Course Outcomes		Programme Outcomes (POs)												Program Specific Outcomes (PSOs)			
	1	1 2 3 4 5 6 7 8 9 10 11 12							12	1	2	3					
CO1	1	-	2	-	1	1	2	1	-	-	-	1	2	1	1		
CO2	1	-	2	-	-	2	2	-	-	-	-	1	2	1	2		
CO3	-	-	1	1	2	-	2	-	-	-	-	1	2	1	-		
CO4	2	-	2	-	•	1	2	1	-	-	-	1	2	1	-		
CO5	-	-	1	2	2	-	3	1	-	-	-	1	2	1	1		
CO6	1	-	1	-	-	2	2	2	-	-	-	2	2	1	-		

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

hur

L:T:P – 3:0:0 Total Hours/Week: 03		
	FOOD BIOTECHNOLOGY	CIE Marks: 50
		SEE Marks: 50
	UNIT-I	10 Hours
technology. Recent Developme Novel bioprocessing Biosensors for food quality as ndustries. Nutrigenomics Definition of Nutriomics, Nutri Nutrigenetics and cancer. Microbial biotechnology of for Metabolic engineering of back technologies for microbial pro- denzymes, pigments). Biotechnologies in foods, add fats. Food applications of a	teria for food ingredients (Amino acids, organic acids roduction of food ingredients. Solid-state fermenta chnology of microbial polysaccharides- natural litives (xanthan) and its future, Microbial biotechnol- algae-nutritional value, source of neutraceuticals	r food biotechnology. biotransformation in food and applications in brief. 10 Hrs. s, vitamins). Introduction t ation for food application occurrence of microbia ogy of food flavor, oils an
processes (chlorella, spirulina,	Agar, alginate). Genetics of Dairy starter cultures. UNIT-III	10 Hrs.
Genetic modifications of plant technology. Molecular biote nonnutritive sweeteners, me Engineering of provitamin-	provement, molecular design of soybean proteins t starches, plant oils, for food applications. Bioproces echnology for neutraceutical enrichment of food tabolic redesign of vitamin -E biosynthesis, produ A ,biosynthetic pathway into rice(Golden rice),	sing of starch using enzyme I crops, Biotechnology o Iction of new metabolites
	approaches to improve putritional quality and shalf lif	
biosynthesis for antioxidants,	approaches to improve nutritional quality and shelf lif	

UBT734E

Credits: 03

- 1. Kalidas s, Gopinadhan P, Anthony P and Robert E.Levin- "Food Biotechnology"- second edition, CRC press, 2006
- 2. Gustavo F.G and Gustavo V.B,-" Food Science and Food Biotechnology"- CRC press, 2003
- 3. Mahesh S.-" Plant Molecular Biotechnology"- first edition, New age international publishers, , 2008
- 4. Norman N.Potter and Joseph H. Hotchkiss- Food Science- fifth edition- CBS publishers and distributors, 2007

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

Course Outcomes**

- 1. Students will be able to know the importance and current status of food biotechnology
- 2. Students will acquire the knowledge on novel food bioprocessing, nutrigenomics in brief.
- 3. Explore the applications of microbes in food biotechnology, new sources of food from microbes etc
- 4. Will be able to learn about plant food biotechnology and transplastomic technology
- 5. Will get the knowledge on applications of Animal food biotechnology and food safety and its regulation
- 6. Able to have an overview recent trends in GMOs and food biotechnology

Course Outcomes				Pro	ogra	mme	Out	com	es (P	Os)			Program Specific Outcomes (PSOs)				
	1	1 2 3 4 5 6 7 8 9 10 11 12								1	2	3					
CO1	1	1	2	-	2	1	-	-	-	-	-	1	2	1	1		
CO2	2	-	2	-	3	2	-	-	-	-	-	1	2	1	1		
CO3	1	1	1	-	2	2	-	-	-	-	-	1	2	1	2		
CO4	2	-	2	-	2	1	-	-	-	-	-	1	2	1	1		
CO5	2	1	1	-	3	1	-	-	-	-	-	1	2	1	2		
CO6	1	-	1	-	2	2	-	-	-	-	-	2	2	1	1		

UBT716H

L:T:P – 3:0:0 Total Hours/Week: 03

INDUSTRIAL MANAGEMENT AND ENTREPRENEURSHIP

Credits: 03 CIE Marks: 50 SEE Marks: 50

UNIT-I	12 Hrs.
Development of management thoughts and its functions Concept & definition of Management, Social Responsibilities of Management, and Pioneers in I Contributions of Taylor, Henry Taylor, Gilberth& Mayo, Schools of Management thought: process school, Empirical School, Human Behavior School, Social system school, Systems approad decision theory school. Selection of site for the plant and plant layout, plant operation and con structural design, storage, material handling, Sources of capital. Definition and functions of a Planning, organizing, staffing, directing and controlling. Concept of authority and responsibility.	Managemen ch school and ntrol, utilities
UNIT–II	10 Hrs.
Quantitative techniques in managerial decisions Concept of productivity, measuring productivity, concept of budget, effective budgetary control, A break even analysis, product life cycle, promotion of sales, pricing, "EOQ" model. Production costs raw materials, and repair, operating supplies, power and other utilities, royalties, etc.), fixed charg depreciation, taxes, insurance, rental costs etc.).	(including
UNIT–III	10 Hrs.
method study, systems of wage payments, bonus, automation, organization of production Functions of purchasing & materials management, quality, quality standard & inspection, source pricing, principles & practices, Inventory management. UNIT-IV	
Entrepreneurship& personnel management Meaning of entrepreneur, evaluation of the concept, function of entrepreneur, entrepreneurship, development of entrepreneurship, stages in entrepreneurial process, role of e in economic development entrepreneurship- its barriers. Recruitment and selection. Training Employer - Employee relationship. Settlement of disputes. Reference Books *	entrepreneurs
 O.P. Khanna - "Industrial Engineering & Management", Dhanpat Rai & Sons, 1992. T. R. Banga & S. C. Sharma - "Industrial Engineering & Management Science", 6th. Edn, Khann Publications, 2003. C.B.Mamoria and S.V.Gankar- Personnel Management, Himalaya Pub, 21 st edn,2010 Veerabhadra Havinal -Management and Entrepreneurship- New Age International, 2009 Ramesh Burbure – Management &Entrepreneurship- Rohan Pub. 2008 Poornima M. Charanthimath – Entrepreneurship Development, Pearson Education-2005 	a

After completion of the course student will be able to

- 1. Recall and recollect the history theories and definition of management and its importance in society
- 2. Analyze and apply the basic concepts of Quantitative techniques of management
- 3. Know the difference between production and productivity, measurement and cost analysis
- 4. Explore the knowledge of production costs, planning and material management
- 5. Make basic economic analysis of project
- 6. Understand the role and importance of entrepreneurship in economic development

Course Outcomes	Programme Outcomes (POs)												Program Specific Outcomes (PSOs)		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-	-	-	-	1	-	-	-	3	1	-	-	2
CO2	-	1	-	-	-	-	-	-	-	-	3	1	-	-	2
CO3	-	1	-	-	-	-	-	-	-	-	3	1	-	-	2
CO4	-	1	-	-	-	-	-	-	-	-	3	1	-	-	2
CO5	-	1	-	-	-	-	-	-	-	-	3	1	-	-	2
CO6	-	1	-	-	-	-	-	-	2	-	3	1	-	-	2

June

UBT733N		Credits: 03				
L:T:P – 3:0:0	INDUSTRIAL SAFETY	CIE Marks: 50				
Total Hours/Week: 03		SEE Marks: 50				
	UNIT-I	12 Hrs.				
Industrial safety: Need for safety, importance of occupational health and safety, Health and safety programs, unsafe conditions, factors contributing to unsafe conditions, Good Lab Practices (GLP). Accidents: Accident preventive measure, Measurement and control of safety performance, 5E's for accident prevention- Engineering, Education, Enthusiasm, Enforcement and Evaluation. Hierarchy of Controls, Safety policy. Chemical Hazards: Types of hazards, Classification of chemicals based on their nature, routes to exposure of chemicals, Health effects of harmful chemicals in the work environment, Control of chemical hazards. UNIT–II 10 Hrs. Electrical Hazards, protection against voltage fluctuations, effects of shock on human body. Fire- Fired						
Physical Hazards and Control measures: Noise, noise exposure regulation, properties of sound, Workers exposure to electromagnetic field, Ionizing radiation and non-ionizing radiations, effects of radiations, Classification of dangerous materials with pictorial symbols, Safety in transportation of dangerous materials by road, rail, ships and pipelines.						
	UNIT–III	10 Hrs.				
Biological and Construction Hazards and their control measures: Classification of Bio hazardous agents –bacterial agents, rickettsial and chlamydial agents, viral agents, fungal, parasitic agents, infectious diseases –Hazardous material used in labs, Instructions followed for hazardous waste disposal, Biohazard control program, Biological safety cabinets. Construction Hazards: Hazards in construction and safety measures, Good Manufacturing Practices (GMP).						
	UNIT-IV	10 Hrs.				
etc. lead, nickel, chromium	I hazards, occupational related diseases- silicosis, a and manganese toxicity, effects and prevention s, temporary and cumulative effects. Industrial	Industrial toxicology, local,				
Kohn, (2007), Fundamentals of Occupational Safety and Health The Scarecrow Press, Inc. 2. Phil Hughes and Ed Ferret,						
(2011), Introduction to Health and Safety at work, (5th edition), Elsevier Ltd.						
Course Outcomes**						

After completion of the course student will be able to

- 1. Apply the basic knowledge of Industrial hazards and safety.
- 2. Interpret & analyze the various types of accidents and chemical hazards.
- 3. Identify physical hazards and apply control measures in work place.

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

- 4. Acquire knowledge of electrical hazards and apply control measures in work place.
- 5. Identify various types of biological hazards and apply control measures.
- 6. Identify control measures and apply the knowledge in industrial toxicology and hygiene, occupational diseases in work place.

Course Outcomes				Pro	ograi	mme	Out	come	es (P	Os)			-	gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	1	1	1	1	1	1	-	-	-	-	-	3	2	1
CO2	-	1	1	3	1	1	1	-	-	-	-	-	3	2	1
CO3	-	1	3	3	3	2	1	-	-	-	-	-	3	2	1
CO4	-	1	3	2	3	2	1	-	-	-	-	-	3	2	1
CO5	-	1	3	3	3	2	1	-	-	-	-	-	3	2	3
CO6	-	1	3	3	3	3	1	-	-	-	-	-	3	2	3

Total Hours/Week: 02

LIST OF EXPERIMENTS IN BIOSEPARATION TECHNIQUES LABORATORY

- 1. Cell disruption techniques.
- 2. Solid-liquid separation methods: Filtration (Cross flow)
- 3. Solid-liquid separation methods: Sedimentation.
- 4. Solid-liquid separation methods: Centrifugation.
- 5. Membrane dialysis
- 6. Product enrichment operations: Precipitation (NH4)2 SO4 fractionation of a protein.
- 7. Product enrichment operations: Two phase aqueous extraction.
- 8. Product drying techniques.
- 9. Estimation of Amino acids / Carbohydrates by TLC.
- 10. Separation of ethanol from fermented broth.
- 11. Separation of Citric acid from fermented broth.
- 12. Separation of proteins by molecular sieving.
- 13. Analysis of biomolecules by HPLC / GC (using standard spectra).

Reference Books *

- 1. Scopes R.K., 1993. Protein Purification IRL Press
- 2. Bioseparations by Belter P.A. and Cussier E., Wiley, 1985.
- 3. Palanivelu. P, 2001, Analytical Biochemistry and Seperation Techniques, Kalaimani Publishers.

Course Outcomes**

After completion of the course student will be able to

- 1. Prepare/reproduce the protocols for the experiments.
- 2. Extract the intracellular product using different cell disruption techniques.
- 3. Concentrate, purify the desired product using different chromatography/filtration techniques.
- 4. Analyze the product both quantitative/qualitatively.
- 5. Record/observe the experimental data and interpret them in the graph/table.
- 6. Calculate the result and to write the conclusion at the end of the experiment.

Course Outcomes				Pro	ograi	mme	Out	com	es (P	Os)				gram Spe comes (P	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	1	-	3	-	-	-	-	-	-	1	1	1	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	-	1
CO3	-	2	-	-	-	-	-	-	-	-	-	-	-	3	1
CO4	-	-	3	-	-	-	-	-	-	-	-	-	2	2	1
CO5	-	-	-	3	3	-	-	-	-	-	-	-	2	2	1
CO6	-	3	-	-	-	-	-	-	-	-	-	2	2	3	1

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT717L	
L:T:P - 0:0:2	

Total Hours/Week: 02

LIST OF EXPERIMENTS IN FOOD ANALYSIS TECHNIQUES LABORATORY

- 1. Proximate analysis of foods
- 2. Nutritional profiling of food samples for labeling (Carbohydrates, protein and fat)
- 3. Nutritional profiling of food samples for labeling (Vitamins and minerals)
- 4. Determination of calories in foods.
- 5. Determination of viscosity and texture of food sample
- 6. Detection of microbial load in processed food a sample
- 7. Extraction and detection of active ingredients in foods
- 8. Extraction of chitin, chitosan and glucosamine from prawn shells/mushrooms
- 9. Detection of Antioxidant property of Nutraceuticals
- 10. Sensory evaluation
- 11. Visit to NABL lab

Reference Books *

- 1. Food analyses by S Suzanne Nielsen, Fourth edition, Springer publisher, 2010
- 2. Food Regulation: Law, Science, Policy and Practice, N.D. Fortin, Wiley Publication, 2nd Edition, 2016
- 3. A Practical Guide to Food Laws and Regulations. Kiron Prabhakar, Bloomsbury Professional India, 1st Edition, 2016.
- 4. Food Safety and Standards Act and Regulations, Food Safety and Standards Authority of India, Ministry of Health and Family Welfare, Government of India, 2006

Course Outcomes**

After completion of the course student will be able to

- 1. Analyze different food samples for quality.
- 2. Evaluate food samples for quality.
- 3. Evaluate food samples for chemical and microbial safety.
- 4. Analyze the data for the acceptability of food sample

Course Outcomes				Pro		Program Specific Outcomes (PSOs)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	1	1	1	-	3	-	-	-	-	-	-	1	1	1	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	-	1
CO3	-	2	-	-	-	-	-	-	-	-	-	-	-	3	1
CO4	-	-	3	-	-	-	-	-	-	-	-	-	2	2	1

_			III SEMEST	ER				202	2-23]	Batch
SI. No	Category	Subject Code	Subject Title	Credits		DUR /EEI	-	EX	(AMINA MAR	-
NO					L	Т	Ρ	CIE	SEE	TOTAL
1.	BSC	22UMA302C	Numerical Techniques and Fourier Series	03	3	0	0	50	50	100
2.	IPCC	22UBT301C	Microbiology	04	3	0	2	50	50	100
3.	IPCC	22UBT305C	Unit Operations	04	3	0	2	50	50	100
4.	PCC	22UBT303C	Biochemistry	03	3	0	0	50	50	100
5.	PCC	22UBT307L	Biochemistry lab	01	0	0	2	50	50	100
6.	INT	22UBT308I	Internship	02	0	0	2	100	-	100
7.	UHV	22UHS324C	Universal Human Values –II	01	2	0	0	50	50	100
8.	HSMC	22UHS322C 22UHS323C	Samskruthika Kannada- Balake Kannada	01	2	0	0	50	50	100
9.	AEC	22UBT306C	Cell Culture Techniques	02	2	0	0	50	50	100
			Total	21	17	2	8	500	400	900

SCHEME OF TEACHING AND EXAMINATION

22UMA302C		03 - Credits	s (3 : 0 : 0)							
Hours / Week : 03	NUMERICAL TECHNIQUES AND FOURIER SERIES	CIE Mar	rks : 50							
Total Hours : 40	SERIES	SEE Ma	rks : 50							
			1							
	UNIT – 1		10 Hrs.							
and backward differenc Gregory forward and Newton's divided differe	ding problems, Newton-Raphson method. Fi e operators (no derivations on relations betw backward interpolation formulae. (Without ence interpolation formulae (without proof) and backward formulae-problems.	ween operatoi t proof), Lagr	rs) Newton range's and							
	UNIT – 2		10 Hrs							
Numerical Integration: Simpson's one third rule, Simpson's three eighth rule waddles' (no derivation of any formulae)-problems. Numerical solution of ODE: Taylors, Euler's and Modified Euler's method, Runge-Kutta 4 th order method, miles Predictor corrector method. UNIT – 3 10 Hrs.										
Periodic functions, Cor	nditions for Fourier series expansions, Fou		pansion of							
•	nditions for Fourier series expansions, Fou ns having finite number of discontinuities, cal harmonic analysis.		pansion of d functions							
Periodic functions, Cor continuous and functio Half-range series, practio	nditions for Fourier series expansions, Fou ns having finite number of discontinuities,		pansion o							
Periodic functions, Cor continuous and functio Half-range series, practic Fourier transforms: Infinite Fourier transforr	nditions for Fourier series expansions, Fou ns having finite number of discontinuities, cal harmonic analysis. UNIT – 4 ns and inverse Fourier transforms- simple pro	even and odd	pansion o d functions 10 Hrs							
Periodic functions, Cor continuous and functio Half-range series, practic Fourier transforms: Infinite Fourier transforr	nditions for Fourier series expansions, Fou ns having finite number of discontinuities, cal harmonic analysis. UNIT – 4	even and odd	pansion o d functions 10 Hrs							
Periodic functions, Cor continuous and functio Half-range series, practic Fourier transforms: Infinite Fourier transform Fourier cosine transform REFERENCES 1. Numerical Methods 2. Higher Engineering 3. Advanced Engineeri New Delhi	nditions for Fourier series expansions, Fou ns having finite number of discontinuities, cal harmonic analysis. UNIT – 4 ms and inverse Fourier transforms- simple pro ns. Inverse Fourier sine and cosine transforms. for Engineers by Steven C Chapra & Raymond Mathematics by Dr. B.S. Grewal, Khanna Public ing Mathematics By H. K. Das, S. Chand & com	even and odd operties, Fourie P Canale. shers, New De opany Ltd. Ram	pansion o d functions 10 Hrs er sine and elhi.							
Periodic functions, Cor continuous and functio Half-range series, practic Fourier transforms: Infinite Fourier transform Fourier cosine transform REFERENCES 1. Numerical Methods 2. Higher Engineering 3. Advanced Engineeri New Delhi	nditions for Fourier series expansions, Fou ns having finite number of discontinuities, cal harmonic analysis. UNIT – 4 ns and inverse Fourier transforms- simple pro ns. Inverse Fourier sine and cosine transforms. for Engineers by Steven C Chapra & Raymond Mathematics by Dr. B.S. Grewal, Khanna Public	even and odd operties, Fourie P Canale. shers, New De opany Ltd. Ram	pansion o d functions 10 Hrs er sine and elhi.							

hur

COURSE OUTCOMES

After completion of the course the students shall be able to,

- 1. Solve engineering problems using non-linear equations and interpolation techniques.
- 2. Solve problems using numerical differentiation and numerical integration.
- 3. Solve ordinary differential equations using numerical methods.
- 4. Solve Problems using the Fourier series.
- 5. Solve problems using the basic concept of Fourier transforms.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
ο	Programme Outcomes Course Outcomes e students will be able t	:0:														
1	Solve engineering problems using non- linear equations and interpolation techniques.	 ✓ 	✓													
2	Solve problems using numerical differentiation an d numerical integration.	√	~													
3	Solve ordinary differential equations using numerica I methods.	~	~													
4	Solve Problems using the Fourier series.	~	~													

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

5	Solve problems using									
	the basic concept of	\checkmark	\checkmark							
	Fourier transforms.									

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

hur

22UBT301C		Credits: 04 (3: 0: 2)
L: T: P - 3: 0: 2	MICROBIOLOGY	CIE Marks: 50
Total Hours/Week: 40		SEE Marks: 50
	UNIT-I	10 Hrs.
the development of microb Microscopy: Principles and a	ry of microbiology-Evolution of microbes. Co iology. Microbial diversity & taxonomy, F pplications of Bright field microscopy, Date sence Microscopy and Electron microscopy (Prokaryotes & Eukaryotes rk-Field Microscopy, Phas SEM & TEM).
	UNIT–II	10Hrs.
growth (continuous and batc of reproduction. Fastidious r	Iltra structure of Bacteria, Culturing of ba h).Viruses, fungi, algae, protozoa, actinomy microorganisms. Microbial toxins. Microbia probic culture techniques. Fermentation (aci	cetes- structure and mode I Techniques: Pure cultur d & alcohol).
	UNIT–III	10 Hrs.
	UNIT–IV	10 Hrs.
bioremediation and bio-contr	Aquatic Microbiology, Bio-fertilizer, Plan	t endophytes, Microbes i
Microbial insecticides, Enzy	s source of protein (SCP), gelatin agents (a mes from Microbes (amylase, protease	lginate, xanthin, agar agar e), Useful products from
Microbial insecticides, Enzy microorganisms using recomb	s source of protein (SCP), gelatin agents (a	lginate, xanthin, agar agar e), Useful products from
Microbial insecticides, Enzy microorganisms using recomb REFERENCE BOOKS 1. Pelczar, Chan and Noe 2. Tortora, Funke and C 2006. 3. Stainer R.Y., Ingraham	s source of protein (SCP), gelatin agents (a mes from Microbes (amylase, protease binant DNA technology (vaccines and antibio el Kreig, "Microbiology"- 5 th Edition Tata Ma ase, "Microbiology an Introduction" -8 th Ed J.L., "General Microbiology"- 5 th Edition Mc Parker, Brock's, "Biology of Microorganism	lginate, xanthin, agar agar e), Useful products from tics). cgraw Hill, 2010. dition, Pearson Education,

E Alcamo I "Fundamentals of Microbiology"6th Ed, Jones & Bartlet, Pub. 2001.
 Prescott, Harley & Klein, "Microbiology" -7th Edition, WCB/McGraw Hill, Int. Edition, 2008.

	LEARNING OBJECTIVES
	know the basic concepts of Microbiology, scope and organization of organisms in the conomy.
	, ility to understand the techniques to study microorganisms through microscopy.
	pable to analyse the structure of different microbes and their applications.
• To	know the metabolic reactions within the organisms for fermentation process.
	COURSE OUTCOMES**
	ility to know the basic concepts of Microbiology, scope ,organization and understand the chniques to study microorganisms through microscopy
• Ab	ility to analyze the structure of different microbes and interpret the techniques used to be and identify the microbes
-	ility to discuss the causative organisms of the disease and their effect on society
• Ab	ility to analyse the applied techniques in the environment and create awareness to ciety
	LIST OF EXPERIMENTS
1	Study of microscopes, Types, werking minsiple, parts of the microscope, headling
1.	Study of microscopes: Types, working principle, parts of the microscope, handling (operating) & caring.
2	Media preparation: NA, Peptone broth, PDA, Macconkeys agar.
	Isolation of bacteria by serial dilution, pour plate ,spread plate and streak plate techniques
4.	Isolation and identification of bacteria and fungi from different sources.
5.	
6.	Study of different staining techniques. (Simple staining differential staining)
7.	Enumeration of microorganisms using colony counter
8.	Fermentation of Carbohydrates (gas production)
9.	Growth curve of bacteria and yeast.
10	. Antibiotic susceptibility testing of bacteria & Observation of motility by hanging dro
	technique.
	COURSE OUTCOMES
1.	Ability to know the basic concepts of Microbiology, scope ,organization and understan
	the techniques to study microorganisms through microscopy
2.	Ability to analyze the structure of different microbes and interpret the techniques use to grow and identify the microbes
	Ability to discuss the causative organisms of the disease and their effect on society
4.	Ability to analyse the applied techniques in the environment and create awareness t society

July

Course Outcomes				F	rogr	amn	ne Ou	utcor	nes				Prog	gramme S Outcome	-
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	2	2	2			2		2					1	1	1
CO 2	2	2	2		2	3		1					2	1	2
CO 3	3	З	2		2	2		1				1	1	1	2
CO 4	3	3	3		2	3		2				1	2	1	3

hur

22UBT305C		Credits: 04
L:T:P – 3:0:2	UNIT OPERATIONS	CIE Marks: 50
Total Hours/Week: 05		SEE Marks: 50

UNIT-I	10 Hrs.										
Introduction to Fluid Mechanics:											
Units and Dimensions, Basic and Derived units, Dimensional homogeneity, Dimensionless numbers, Rayleigh method, Buckingham's pi theorem, Similitude. Fluid definition and classification (Types of fluids – Newtonian and Non Newtonian); Rheological behaviour of fluids. Fluid statics and its applications Hydrostatic equilibrium, Pressure measurement - Manometers.											
UNIT–II	10 Hrs.										
Flow past Immersed Bodies:											
Types of flow - laminar and Turbulent; Reynolds number; Basic equations of fluid flow - equation and Bernoulli equation; Correction for Bernoulli's equation, Pump work in equation; Flow through circular and non-circular conduits – Friction factor relations for s commercial pipes.	Bernoulli's										
UNIT–III	10 Hrs.										
Flow measurements: Orifice meter, Venturimeter, Rota meter. Pumps, principle, construction numerical. minor losses, Centrifugal & Reciprocating pumps, Characteristics of centrifugal pur fittings and valves. Dimensional Analysis.	-										

Mechanical Operations:

Types of filtration, Filter media and filter aids, calculation of resistances and rate of filtration, filtration equipment. Settling, Free and Hindered, Stoke's law, Newton's law, Terminal settling velocity, Batch sedimentation, Agitation: Theory of mixing, Power number calculations, mixing equipment. Flow patterns in agitated tanks, mechanism of mixing, scale up of mixing systems. Size Separation: Particle shape, size, screen analysis, screening equipment. Size Reduction: Characteristics of comminute products, crushing laws and work index; Size reduction equipment.

UNIT-IV

LIST OF EXPERIMENTS IN UNIT OPERATIONS LABORATORY

- 1. Friction in circular and non-circular pipes
- 2. Flow rate measurement using Orifice meter

10 Hrs.

- 3. Flow rate measurement using Venture meter
- 4. Batch sedimentation test
- 5. Constant pressure /constant filtration using leaf filter
- 6. Verification of Stoke's law in Free / Hindered settling
- 7. Determination of screen effectiveness and sieve analysis
- 8. Verification of Bernoulli's theorem
- 9. Unsteady state flow
- 10. Study of packed bed characteristics
- 11. Distillation

Reference Books *

- 1. McCabe WL, Smith JC and Harriott (2005) Unit operations of Chemical Engineering, 7th Edn., McGraw-Hill Publications, USA.
- 2. Gavhane K. A (2012) Unit Operations I & II, 22nd Edn. Nirali Prakashan, India.
- 3. Alan S Foust, Wenzel LA, Clump CW, Maus L, and Anderson LB (2008) Principles of Unit Operations. 3rd Edn. John Wiley & Sons, USA.
- 4. R. P. Chhabra V. Shankar (2017) Coulson and Richardson's Chemical Engineering Volume 1A: Fluid Flow: Fundamentals and Applications. 7th Edition, Elsevier, USA.
- 5. R.P. Chhabra Basavaraj Gurappa (2019) Coulson and Richardson's Chemical Engineering Volume 2A: Particulate Systems and Particle Technology. 6th Edition, Elsevier, USA.

Course Outcomes**

After completion of the course student will be able to

- 1. Understand the application of dimensional analysis and can state and describe the nature and properties of the fluids.
- 2. Apply the knowledge of fluid mechanics in Engineering applications
- 3. Determine the flow rate, discharge of transportation fluids
- 4. Apply the knowledge of mechanical operations in Engineering applications

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

Course Outcomes			Pr	ogra	amr	ne C	Outc	ome	es (P	Os)			Prog	ram Spo	ecific
													Outo	omes (F	PSOs)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2	2	2	1	1	-	-	-	-	-	-	-	3		
CO2	3	2	3	2	1	-	-	-	-	-	-	-	3		
CO3	3	2	1	1	1	-	-	-	-	-	-	-	3		
CO4	2	3	3	1	1	-	-	-	-	-	-	-	2		

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

June

22UBT303C		Cre	dits: 03
L: T: P - 3: 0: 0	BIOCHEMISTRY	CIE M	arks: 50
Total Hours/Week: 42		SEE M	arks: 50
	UNIT – 1		12 Hrs.
Principles of Bioenergetics:			
	conversion. Structure and properties	s of ATP, Bio	penergetics of
metabolic pathway			
Carbohydrate Metabolism:			
	ron transport chain and oxidative phos	• •	•
	yoxylate cycle, Pentose Phosphate Patl	hway, Glucone	eogenesis and
regulation of gluconeogenes			
-	metabolism- Galactosemia, Lactose int		cogen storage
disorder etc. (Defective enzy	yme lead to disorder during metabolism)		
Osazone formation to identi	· · ·		
	fy the carbohydrates. UNIT – 2		10 Hrs
Lipid Metabolism:	UNIT – 2		
Lipid Metabolism: Biosynthesis of fatty acids.	UNIT – 2 cholesterol, phospholipids and glycolipi		n of fatty acio
Lipid Metabolism: Biosynthesis of fatty acids. biosynthesis, biodegradatio	UNIT – 2		n of fatty acio
Lipid Metabolism: Biosynthesis of fatty acids. biosynthesis, biodegradatio diabetes.	UNIT – 2 cholesterol, phospholipids and glycolipi on of fatty acid, ketone bodies produ		n of fatty acio
Lipid Metabolism: Biosynthesis of fatty acids. biosynthesis, biodegradatio	UNIT – 2 cholesterol, phospholipids and glycolipi on of fatty acid, ketone bodies produ m-Sphingolipidoses etc.		n of fatty acic starving and
Lipid Metabolism: Biosynthesis of fatty acids. biosynthesis, biodegradatio diabetes. Disorders of lipid metabolisr	UNIT – 2 cholesterol, phospholipids and glycolipi on of fatty acid, ketone bodies produ		n of fatty acic starving and
Lipid Metabolism: Biosynthesis of fatty acids. biosynthesis, biodegradatio diabetes. Disorders of lipid metabolisr Nucleic acid Metabolism:	UNIT – 2 cholesterol, phospholipids and glycolipi on of fatty acid, ketone bodies produ m-Sphingolipidoses etc. UNIT – 3	uction during	n of fatty acio starving and 10 Hrs
Lipid Metabolism: Biosynthesis of fatty acids. biosynthesis, biodegradatio diabetes. Disorders of lipid metabolisr Nucleic acid Metabolism: Biosynthesis of purines - ori	UNIT – 2 cholesterol, phospholipids and glycolipi on of fatty acid, ketone bodies produ <u>m-Sphingolipidoses etc.</u> UNIT – 3 igin of ring atoms, formation of IMP, cor	uction during	n of fatty acio starving and 10 Hrs IP to AMP and
Lipid Metabolism: Biosynthesis of fatty acids. biosynthesis, biodegradatio diabetes. Disorders of lipid metabolism Nucleic acid Metabolism: Biosynthesis of purines - ori GMP.De novo synthesis of p	UNIT – 2 cholesterol, phospholipids and glycolipi on of fatty acid, ketone bodies produ m-Sphingolipidoses etc. UNIT – 3 igin of ring atoms, formation of IMP, cor pyrimidine nucleotides - biosynthesis of	uction during nversion of IM UTP & CTP. B	starving and 10 Hrs . IP to AMP and Biodegradation
Lipid Metabolism: Biosynthesis of fatty acids. biosynthesis, biodegradatio diabetes. Disorders of lipid metabolisr Nucleic acid Metabolism: Biosynthesis of purines - ori GMP.De novo synthesis of p of purines&pyrimidines.	UNIT – 2 cholesterol, phospholipids and glycolipi on of fatty acid, ketone bodies produ m-Sphingolipidoses etc. UNIT – 3 igin of ring atoms, formation of IMP, cor pyrimidine nucleotides - biosynthesis of Recycling of Purine and Pyrimidine	nversion of IM UTP & CTP. B nucleotides	n of fatty acio starving and 10 Hrs IP to AMP and Biodegradatior
Lipid Metabolism: Biosynthesis of fatty acids. biosynthesis, biodegradatio diabetes. Disorders of lipid metabolisr Nucleic acid Metabolism: Biosynthesis of purines - ori GMP.De novo synthesis of p of purines&pyrimidines.	UNIT – 2 cholesterol, phospholipids and glycolipi on of fatty acid, ketone bodies produ m- Sphingolipidoses etc. UNIT – 3 gin of ring atoms, formation of IMP, cor pyrimidine nucleotides - biosynthesis of Recycling of Purine and Pyrimidine cic acid metabolism-Lesch-Nyhan Syndror	nversion of IM UTP & CTP. B nucleotides	n of fatty acic starving and 10 Hrs IP to AMP and Biodegradation 5 by salvage
Lipid Metabolism: Biosynthesis of fatty acids. biosynthesis, biodegradatio diabetes. Disorders of lipid metabolisr Nucleic acid Metabolism: Biosynthesis of purines - ori GMP.De novo synthesis of p of purines&pyrimidines. pathways.Disorders of nucle	UNIT – 2 cholesterol, phospholipids and glycolipi on of fatty acid, ketone bodies produ m-Sphingolipidoses etc. UNIT – 3 igin of ring atoms, formation of IMP, cor pyrimidine nucleotides - biosynthesis of Recycling of Purine and Pyrimidine	nversion of IM UTP & CTP. B nucleotides	n of fatty acio starving and 10 Hrs IP to AMP and Biodegradation 5 by salvage
Lipid Metabolism: Biosynthesis of fatty acids. biosynthesis, biodegradatio diabetes. Disorders of lipid metabolism Nucleic acid Metabolism: Biosynthesis of purines - ori GMP.De novo synthesis of p of purines&pyrimidines. pathways.Disorders of nucle Amino Acid Metabolism:	UNIT – 2 cholesterol, phospholipids and glycolipi on of fatty acid, ketone bodies produ m- Sphingolipidoses etc. UNIT – 3 igin of ring atoms, formation of IMP, cor pyrimidine nucleotides - biosynthesis of Recycling of Purine and Pyrimidine ic acid metabolism-Lesch-Nyhan Syndror UNIT – 4	uction during nversion of IM UTP & CTP. B e nucleotides me and Gout	n of fatty acid starving and 10 Hrs P to AMP and Biodegradation by salvage 10 Hrs
Lipid Metabolism: Biosynthesis of fatty acids. biosynthesis, biodegradatio diabetes. Disorders of lipid metabolism Nucleic acid Metabolism: Biosynthesis of purines - ori GMP.De novo synthesis of p of purines&pyrimidines. pathways.Disorders of nucle Amino Acid Metabolism: Biosynthesis of amino acids	UNIT – 2 cholesterol, phospholipids and glycolipi on of fatty acid, ketone bodies produ m- Sphingolipidoses etc. UNIT – 3 gin of ring atoms, formation of IMP, cor pyrimidine nucleotides - biosynthesis of Recycling of Purine and Pyrimidine cic acid metabolism-Lesch-Nyhan Syndror	uction during nversion of IM UTP & CTP. B e nucleotides me and Gout	n of fatty acic starving and 10 Hrs IP to AMP and Biodegradation by salvage 10 Hrs cetate family)

deamination, transamination and urea cycle.Disorders of amino acid metabolism-Phenylketonuria, Albinism, Maple Syrup Urine Disease, Tyrosinemia.

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

	REFERENCES
1.	David L. Nelson and Michael Cox, "Lehninger Principles of Biochemistry" -6th Edition
	LubertStryer, "Biochemistry" -Freeman & Co., Pub, 2010.
2.	Voet&Voet, "Biochemistry"- 3rd Edition, John Wiley,New York Pub., 2004.
3.	Thomas M. Davlins" Biochemistry with clinical correlations" Wiley-Liss; 5 edition, 2001.
4.	Mathews, Vanholde&Arhen "Biochemistry" -3rd Edition, Pearson Education Pub., 3 edition 2010.
5.	K. Trehan, "Biochemistry" -New Age International Pub, 2nd edition, 2003
6.	Elliot & William H, "Biochemistry & Molecular Biology" Oxford Pub., 2005.
7.	Helmreich JEM, "Biochemistry of cell signaling" –Oxford Pub. 2005.
8.	U. Sathyanarayana, "Biochemistry" -Books and Allied Pub, 2007
9.	Berg J.M., Stryer, Tymoczko J.L. "Biochemistry" Freeman & co 2010.
10	. Freifelder D. "Molecular Biology" -Narosa Publications, 2nd Edition 2003.
	LEARNING OBJECTIVES
•	To understand the principles of bioenergetics.
•	To study metabolic pathway reactions and analysis of metabolic disorders.
•	To study the experimental identification of biomolecules.
	LIST OF EXPERIMENTS
	COURSE OUTCOMES
1.	Ability to understand the principles of high energy compounds & interpret
	the metabolic pathways in the carbohydrates and their disorders
2.	Ability to recognize the regulation of lipid metabolism along with the in born errors.
3.	Ability to understand the origin of atoms in purine and pyrimidine & also
	interpret the pathways in the nucleic acid metabolism disorders
4	Ability to comprehend pathways involved in amino acid metabolism and its disorders

Course Outcomes					Progr	amm	ne Ou	tcom	ies					amme Spe Outcomes	
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	1	2	3	2			3	3				3	2	3	
CO 2	2	3	3	3		3	2	3				3	2	1	2
CO 3	2	2	3	3		3	2	2				3	3	2	
CO 4	2	2	2	2		2	2	2				2	2	2	

may Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

SUBJECT CODE:22UBT307L

BIOCHEMISTRY LABORATORY

Credits: 02

CIE Marks: 50 SEE Marks: 50

L: T: P - 0: 0:2 Total Hours/Week: 42

CO 5

CO 6

TOtarrie		CCR.	74										566.14	101103. 30	,
								VDED							
						LISI	OFE	XPER	INIE	NIS					1211
1			r.o. 100. c	nto		20 /1	woigh	+ maa	0.01150	mont		contr			12 Hrs
1.	•					ne / v	weign	it me	asure	ement	s, cor	centr	ation unit	is, speci	neity,
2	precis			-		انمنا		lorat	aine						
	Class			•		•		•		orc of	conct	ant ct	rength.		
5. 4.	-	•	•			• •					CONST		ength.		
	Quali														
5. 6.	Estim							•			I				
	Estim			-	-							hd			
	Detei							-		-	metri	Ju			
	Detei				•				i iipid						
	. Detei						•								
	. Estim				•			•	ie me	thod.					
					1			EREN							
1.	Rodn	ev Bo	over.	"Mo	dern	Expe				mistr	v"-Pe	arson	Educatio	n Pub. ()	2000).
2.		-	-			-					-		ub, (2003	-	,
3.	Patta							-		U		,	<i>,</i> , ,		
4.	Beed	uSasł	nidha	irRao	and	Vijay	Desh	pand	le <i>,</i> "E	xperin	nenta	l Bioc	hemistry"	' -I.K.Int	I
5.	Plum	mer l	О. Т"	'Pract	tical E	Bioch	emist	try" -	тмн	Pub.,	1988				
						LEAI	RNIN	G OB.	JECTI	VES					
						CO	URSE	OUT	COM	IES					
1.		-					-				-	ent & I	buffer pre	eparatio	ns.
2.		-		-					-	ativel	-				
3.													en sample	9	
4.		•							amino	o acid	quan	titativ	ely.		
5.	Abilit														
6.	Abilit	y to a	pply	knov	wledg	ge of	acid 8	& iodi	ine va	alue to	o dete	rmine	the qual	ity of lip	ids.
<u> </u>															• ••
Course					Prog	ramm	ne Ou	tcom	es				0	mme Sp	
Outcomes		2	2				-			10	44	12		utcome	
CO 1	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	1	2	3	2			3	3				3	2	3	1
CO 2	2	3	3	2		2	2	3				3	2	3	1
CO 3	2	3	3	3		3	2	2				2	2	1	2
CO 4	3	3	3	2		2	2	2				2	3	1	1

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

SUBJECT CODE:22UBT306C		Credits: 02
L: T: P - 2: 0: 0	CELL CULTURE TECHNIQUES	CIE Marks: 50
Total Hours/Week: 26		SEE Marks: 50
	UNIT – 1	8 Hrs.
sterilization of media, expla growth hormones in ce	equirements, lab organisation, media co ant selection, sterilisation and preparati ell culture.Cellular totipotency, cytoo pryogenesis. Plant growth hormones - a nd product formation.	ion for inoculation, role of differentition, organogenic
	UNIT – 2	6 Hrs.
	hybridization, haploid production, min ht, hairy root culture, synthetic seeds. ing.	Regeneration of plantlets-
Animal cell culture Technique	UNIT – 3	6 Hrs.
		assage number, split ratio,
	UNIT – 4	6 Hrs.
	y and Cytotoxicity assay –MTT, LDH deh nic assay. Characterization. Cell line cor	
	REFERENCES	
 Introduction to Plan Publishers, 2010 Biotech Expanding Ho Bruce Alberts, Alexa 	ls-3 rd Edition-R.IanFreshney.Wiley Less, 202 nt biotechnology by H. S. Chawla, 2 nd prizons-B. D. Singh, Kalyani Publishers,202 Inder Johnson, Julian Lewis, Martin Raff Plogy of The Cell, GS publishers,2002	^I Edition, Oxford and IBH 10.
	LEARNING OBJECTIVES	
2. To comprehend the ap	to produce in vitro cultures plications of plant tissue culture technique nowledge of culture of animal cells in <i>in vi</i>	

hur

- 1. To use the plant cells to produce in vitro cultures
- 2. To comprehend the applications of plant tissue culture techniques in various fields
- 3. To acquire working knowledge of culture of animal cells in *in vitro* conditions.
- 4. To identify, and classify the cell culture techniques

Course Outcomes		Programme Outcomes											Programme Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3												1	1	1
CO 2	1				3									2	2
CO 3	1				3			1			1		3	3	
CO 4	3				3									3	

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

							Бу		tion
SLNo	Subject Code	Subject Name	Credits	H	our	S	Examination CIE SEE 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50		
SI No	Subject Code			L	Т	Ρ	CIE	SEE	Total
1	22UBT516C	Bioprocess & Reaction Engineering	3	3	0	0	50	50	100
2	22UBT519C	Genetic Engineering & Applications	3	3	0	0	50	50	100
3	22UBT520C	Fundamentals of Bioinformatics	3	2	2	0	50	50	100
4	22UBT52XE	Elective-I	3	3	0	0	50	50	100
5	22UBT506H	Industrial Safety and Bioethics	3	3	0	0	50	50	100
6	22UBT514L	Bioinformatics Lab	1	0	0	2	50	50	100
7	22UBT515L	Genetic Engineering Lab	1	0	0	2	50	50	100
8	22UCS559L	Advanced C Programming Lab	2	0	0	2	50	50	100
9	22UHS002N	Advance Quantitative Aptitude and Soft Skills	1	2	0	0	50	50	100
10	22UXX5XXN	Open Elective-I	3	3	0	0	50	50	100
	•	Total	23	19	2	6	500	500	1000

V-Semester-2022-23

Elective-I

UBT521E: Environmental BT UBT522E: Biomedical Instrumentation UBT525E: Stem cell technology UBT527E: Nutraceuticals

> Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

Subje	ct Code: 22UBT516C		Credits: (3	3:0:0)
	L: T: P – 3-0-0	BIOPROCESS & REACTION ENGINEERING	CIE Marks	s: 50
Тс	otal Hours/Week: 40		SEE Marks	s: 50
				_
		UNIT-I		10 Hrs.
	cs of Homogeneous react			_
		nd bioprocess engineering, Concentration d	-	
•	•	resentation of elementary reaction and No		
		entary Reactions, Testing Kinetic Models.	•	•
		erature dependency from Arrhenius law, Co	ollision theory,	Transitio
state t	heory, Thermodynamic a	pproach, Activation Energy.		
		UNIT-II		10Hrs.
-	retation of Batch Bioreac			
		, Integral method of analysis of data -first of		
		, homogenous catalyzed reactions, irreve		
	•	lel, reactions of shifting order, autocataly	tic reactions,	reversibl
reactic	ons, differential method o	of analysis of data and numerical.		
		UNIT–III		10 Hrs.
Introdi equati reacto	on, relation between Co r, MFR/CSTR and PFR, s	onsider for designing a reactor, Types o oncentration and conversion, Performance space time and space velocity for flow r	equation for i	deal batcl
Introdi equati reacto	uction. Factors to be c on, relation between Co	onsider for designing a reactor, Types o ncentration and conversion, Performance	equation for i	deal batc
Introdi equati reacto reacto	uction. Factors to be c on, relation between Co r, MFR/CSTR and PFR, s	onsider for designing a reactor, Types o oncentration and conversion, Performance space time and space velocity for flow r	equation for i	deal batc n of flow
Introdu equati reacto reacto Design	uction. Factors to be c on, relation between Co r, MFR/CSTR and PFR, s rs and numerical.	onsider for designing a reactor, Types o oncentration and conversion, Performance space time and space velocity for flow r	equation for i eactors, desig	deal batc n of flov 10 Hrs.
Introdu equati reacto reacto Design Introdu	uction. Factors to be c on, relation between Co r, MFR/CSTR and PFR, s rs and numerical. In for single reactions uction .Size comparison	onsider for designing a reactor, Types o oncentration and conversion, Performance space time and space velocity for flow r UNIT–IV	equation for i eactors, design n series /MFR	deal batc n of flov 10 Hrs. in series,
Introdu equati reacto reacto Design Introdu	uction. Factors to be c on, relation between Co r, MFR/CSTR and PFR, s rs and numerical. In for single reactions uction .Size comparison	onsider for designing a reactor, Types o oncentration and conversion, Performance space time and space velocity for flow r UNIT-IV of single reactors, multiple reactors CSTR in	equation for i eactors, design n series /MFR	deal batc n of flov 10 Hrs. in series,
Introdu equati reacto reacto Design Introdu CSTR in	uction. Factors to be c on, relation between Co r, MFR/CSTR and PFR, s rs and numerical. In for single reactions uction .Size comparison n parallel .PFR in series, in	onsider for designing a reactor, Types o oncentration and conversion, Performance space time and space velocity for flow r UNIT–IV of single reactors, multiple reactors CSTR in parallel, Reactors of different types in serie REFERENCE BOOKS	equation for i eactors, design n series /MFR s, and numeric	deal batc n of flov 10 Hrs. in series, cal.
Introdu equati reacto reacto Design Introdu CSTR in	uction. Factors to be c on, relation between Co r, MFR/CSTR and PFR, s rs and numerical. In for single reactions uction .Size comparison n parallel .PFR in series, in	onsider for designing a reactor, Types o oncentration and conversion, Performance space time and space velocity for flow r UNIT–IV of single reactors, multiple reactors CSTR in a parallel, Reactors of different types in serie	equation for i eactors, design n series /MFR s, and numeric	deal batc n of flov 10 Hrs. in series, cal.
Introdu equati reacto reacto Design Introdu CSTR in 1.	uction. Factors to be c on, relation between Co r, MFR/CSTR and PFR, s rs and numerical. I for single reactions uction .Size comparison n parallel .PFR in series, ir Scott Fogler, H (2016) B India Pvt. Ltd.	onsider for designing a reactor, Types o oncentration and conversion, Performance space time and space velocity for flow r UNIT–IV of single reactors, multiple reactors CSTR in parallel, Reactors of different types in serie REFERENCE BOOKS	equation for i eactors, design n series /MFR s, and numeric , 6 th edn., Pre	deal batc n of flow 10 Hrs. in series, cal. ntice Hall
Introdu equati reacto reacto Design Introdu CSTR in 1.	uction. Factors to be c on, relation between Co r, MFR/CSTR and PFR, s rs and numerical. A for single reactions uction .Size comparison n parallel .PFR in series, ir Scott Fogler, H (2016) R India Pvt. Ltd. Levenspiel O (2006) Che	onsider for designing a reactor, Types o oncentration and conversion, Performance space time and space velocity for flow r UNIT–IV of single reactors, multiple reactors CSTR in parallel, Reactors of different types in serie REFERENCE BOOKS Elements of Chemical Reaction Engineering	equation for i eactors, design n series /MFR s, and numeric , 6 th edn., Pre Brd edn, New D	deal batc n of flow 10 Hrs. in series, cal. ntice Hall
Introdu equati reacto reacto Design Introdu CSTR in 1. 2.	uction. Factors to be c on, relation between Co r, MFR/CSTR and PFR, s rs and numerical. I for single reactions uction .Size comparison n parallel .PFR in series, ir Scott Fogler, H (2016) E India Pvt. Ltd. Levenspiel O (2006) Che Kargi and Shuler (2015)	onsider for designing a reactor, Types o oncentration and conversion, Performance space time and space velocity for flow re UNIT–IV of single reactors, multiple reactors CSTR in parallel, Reactors of different types in serie REFERENCE BOOKS Elements of Chemical Reaction Engineering mical Reaction Engineering, Wiley Eastern, 3	equation for i eactors, design n series /MFR s, and numeric , 6 th edn., Pre Brd edn, New D fall PTR.	deal batc n of flow 10 Hrs. in series, cal. ntice Hall Delhi.
Introdu equati reacto reacto Design Introdu CSTR in 1. 2. 3.	uction. Factors to be c on, relation between Co r, MFR/CSTR and PFR, s rs and numerical. Infor single reactions uction .Size comparison n parallel .PFR in series, ir Scott Fogler, H (2016) F India Pvt. Ltd. Levenspiel O (2006) Che Kargi and Shuler (2015) BaileyJE and Ollis DF (20	onsider for designing a reactor, Types o oncentration and conversion, Performance space time and space velocity for flow r UNIT–IV of single reactors, multiple reactors CSTR in parallel, Reactors of different types in serie REFERENCE BOOKS Elements of Chemical Reaction Engineering mical Reaction Engineering, Wiley Eastern, 3 Bioprocess Engineering. 3nd edn., Prentice H	equation for i eactors, design n series /MFR s, and numeric s, 6 th edn., Pre Brd edn, New D Hall PTR. 2nd edn. Mc G	deal batc n of flov 10 Hrs. in series, cal. ntice Hall Delhi.
Introdu equati reacto reacto Design Introdu CSTR in 1. 2. 3. 4.	uction. Factors to be c on, relation between Co r, MFR/CSTR and PFR, s rs and numerical. Infor single reactions uction .Size comparison n parallel .PFR in series, ir Scott Fogler, H (2016) F India Pvt. Ltd. Levenspiel O (2006) Che Kargi and Shuler (2015) BaileyJE and Ollis DF (20	onsider for designing a reactor, Types o oncentration and conversion, Performance space time and space velocity for flow r UNIT–IV of single reactors, multiple reactors CSTR in parallel, Reactors of different types in serie REFERENCE BOOKS Elements of Chemical Reaction Engineering mical Reaction Engineering, Wiley Eastern, 3 Bioprocess Engineering. 3nd edn., Prentice H 10) Biochemical Engineering Fundamentals,	equation for i eactors, design n series /MFR s, and numeric s, 6 th edn., Pre Brd edn, New D Hall PTR. 2nd edn. Mc G	deal batc n of flov 10 Hrs. in series, cal. ntice Hall Delhi.
Introdu equati reacto reacto Design Introdu CSTR in 1. 2. 3. 4. 5.	uction. Factors to be c on, relation between Co r, MFR/CSTR and PFR, s rs and numerical. I for single reactions uction .Size comparison n parallel .PFR in series, ir Scott Fogler, H (2016) R India Pvt. Ltd. Levenspiel O (2006) Che Kargi and Shuler (2015) BaileyJE and Ollis DF (20 Charles D. Holland (199 Sons. Pauline M Doran., Biop	onsider for designing a reactor, Types o oncentration and conversion, Performance space time and space velocity for flow r UNIT–IV of single reactors, multiple reactors CSTR in parallel, Reactors of different types in serie REFERENCE BOOKS Elements of Chemical Reaction Engineering mical Reaction Engineering, Wiley Eastern, 3 Bioprocess Engineering. 3nd edn., Prentice H 10) Biochemical Engineering Fundamentals,	equation for i eactors, design n series /MFR s, and numeric s, 6 th edn., Pre Brd edn, New D Hall PTR. 2nd edn. Mc G neering, John N	deal batc n of flov 10 Hrs. in series, cal. ntice Hall Delhi. Graw- Hill. Wiley and
Introdu equati reacto reacto Design Introdu CSTR in 1. 2. 3. 4. 5. 6.	uction. Factors to be c on, relation between Co r, MFR/CSTR and PFR, s rs and numerical. for single reactions uction .Size comparison n parallel .PFR in series, ir Scott Fogler, H (2016) B India Pvt. Ltd. Levenspiel O (2006) Che Kargi and Shuler (2015) BaileyJE and Ollis DF (20 Charles D. Holland (199 Sons. Pauline M Doran., Biop 2013.	onsider for designing a reactor, Types o oncentration and conversion, Performance space time and space velocity for flow r UNIT–IV of single reactors, multiple reactors CSTR in parallel, Reactors of different types in serie REFERENCE BOOKS Elements of Chemical Reaction Engineering mical Reaction Engineering, Wiley Eastern, 3 Bioprocess Engineering. 3nd edn., Prentice H 10) Biochemical Engineering Fundamentals, 0) Fundamentals of Chemical Reaction Engine process Engineering Principles, 2nd Edition,	equation for i eactors, design n series /MFR s, and numeric s, 6 th edn., Pre Brd edn, New D Hall PTR. 2nd edn. Mc G neering, John M , Academic Pr	deal batc n of flov 10 Hrs. in series, cal. ntice Hall Delhi. Graw- Hill. Wiley and ess, USA,
Introdu equati reacto reacto Design Introdu CSTR in 1. 2. 3. 4. 5. 6.	uction. Factors to be c on, relation between Co r, MFR/CSTR and PFR, s rs and numerical. for single reactions uction .Size comparison n parallel .PFR in series, ir Scott Fogler, H (2016) F India Pvt. Ltd. Levenspiel O (2006) Che Kargi and Shuler (2015) BaileyJE and Ollis DF (20 Charles D. Holland (199 Sons. Pauline M Doran., Biop 2013. Tapobrata Panda., Biore	onsider for designing a reactor, Types of oncentration and conversion, Performance space time and space velocity for flow re UNIT-IV of single reactors, multiple reactors CSTR in parallel, Reactors of different types in serie REFERENCE BOOKS Elements of Chemical Reaction Engineering mical Reaction Engineering, Wiley Eastern, 3 Bioprocess Engineering. 3nd edn., Prentice H 10) Biochemical Engineering Fundamentals, 0) Fundamentals of Chemical Reaction Engine process Engineering Principles, 2nd Edition, eactors: Analysis and Design, 1st Edition, Tata	equation for i eactors, design n series /MFR s, and numeric s, 6 th edn., Pre Brd edn, New D Hall PTR. 2nd edn. Mc G neering, John M , Academic Pr	deal batch n of flow 10 Hrs. in series, cal. ntice Hall Delhi. Graw- Hill. Wiley and ess, USA,
Introdu equati reacto reacto Design Introdu CSTR in 1. 2. 3. 4. 5. 6.	uction. Factors to be c on, relation between Co r, MFR/CSTR and PFR, s rs and numerical. for single reactions uction .Size comparison n parallel .PFR in series, ir Scott Fogler, H (2016) B India Pvt. Ltd. Levenspiel O (2006) Che Kargi and Shuler (2015) BaileyJE and Ollis DF (20 Charles D. Holland (199 Sons. Pauline M Doran., Biop 2013.	onsider for designing a reactor, Types of oncentration and conversion, Performance space time and space velocity for flow re UNIT-IV of single reactors, multiple reactors CSTR in parallel, Reactors of different types in serie REFERENCE BOOKS Elements of Chemical Reaction Engineering mical Reaction Engineering, Wiley Eastern, 3 Bioprocess Engineering. 3nd edn., Prentice H 10) Biochemical Engineering Fundamentals, 0) Fundamentals of Chemical Reaction Engine process Engineering Principles, 2nd Edition, eactors: Analysis and Design, 1st Edition, Tata	equation for i eactors, design n series /MFR s, and numeric s, 6 th edn., Pre Brd edn, New D Hall PTR. 2nd edn. Mc G neering, John M , Academic Pr	deal batch n of flow 10 Hrs. in series, cal. ntice Hall Delhi. Graw- Hill. Wiley and ess, USA,

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

- 1 To Understand the basic concept of reaction engineering
- 2 To calculate the order and rate of reaction
- 3 To categorize the batch reactor data for different reactions
- 4 To decide the suitable bioreactor for different reactor
- 5 To Demonstrate the RTD to calculate the conversion
- 6 To Evaluate the bioreactor for various purposes

- 1. Understand the basic concept of reaction engineering.
- 2. Predict the order and rate of the different reactions.
- 3. Analyze the batch bioreactor data for different reactions.
- 4. Design the suitable bioreactor for different biochemical reactions.
- 5. Predict the residence time distribution to determine the conversion in non ideal flow reactors
- 6. Analyze bioreactors for various cell cultures.

Course				Pro	gram	nme	Outc	ome	S				Progra	amme Sp	oecific
Outcomes													C	Outcome	S
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3	3	2	2	2							1	2		
CO 2	3	2	2	2	1							1	2		
CO 3	2	3	2	1	2							1	2		
CO 4	2	3	3	2	1							1	2		
CO 5	3	1	2	1	2							1	2		
CO 6	2	2	2	2	1							1	2		

Subject Code:22UBT519C

GENETIC ENGINEERING & APPLICATIONS

L: T: P - 3-0-0 Total Hours/Week: 40

10 Hrs.

Introduction

Tools of genetic engineering- vectors in recombinant DNA technology, biology and salient features of vectors, Types of vectors - plasmids, cosmids, bacteriophage lambda vectors.

UNIT-I

Enzymes in genetic engineering:

Introduction- Restriction Endonucleases-classification, mode of action, applications. Enzymes used in nucleic acid modification – Alkaline phosphatase, polynucleotide Kinase, Ligases, terminal deoxy nucleotidyl transferase

UNIT-II

10Hrs.

Nucleic acid hybridization and amplification

Methods of nucleic acid detection, Fluorescent In situ hybridization (FISH), colony hybridization, polymerase chain reaction (PCR), its types and applications, methods of nucleic acid hybridization, Southern, Western and Northern hybridization techniques.

Construction of cDNA libraries:

Construction of Complementary DNA (cDNA), genomic DNA libraries and cDNA libraries.

UNIT-III

10 Hrs.

10 Hrs.

Gene transfer techniques

Gene transfer techniques in plants, animals and microbes –Transformation, microinjection, electroporation, microprojectile system, and liposome mediated transfer, embryonic stem cell method. Agrobacterium-mediated gene transfer in plants – Ti & Ri Plasmid: structure and functions, Ti based vectors- Binary vectors and Cointegrate vectors.

Transgenic science and genetic improvement:

Transgenic science in plant improvement, Antisense RNA technology (Flavr savr tomatoes). Application of plant transformation for productivity and performance – Herbicide resistance glyphosate. insect resistance - Bt genes(*Bacillus thuringiensis* and its mode of action), Cry proteins mechanism of action.

Gene therapy

Introduction, Methods of Gene therapy-gene targeting, gene augmentation, assisted killing, prodrug therapy and gene silencing. Gene therapy in the treatment of cancer, SCID, muscular dystrophy. Use of thrombolytic agents in blood clotting. Challenges in gene therapy. Applications:

UNIT-IV

Engineering microbes for the production of Insulin, growth hormones, monoclonal antibodies.

REFERENCE BOOKS

- 1. Molecular Biotechnology, Principles and applications of Recombinant DNA by Bernard R Glick and Jack J Pasternak, second edition, CBS Publishers, 2012.
- 2. Recombinant DNA by Watson, et al., second edition, Freeman Publishers 2010.
- Principles of gene manipulation, Primrose S.B., Blackwell Scientific Publications, 2010. 3.

- 4. From Genetics to Gene Therapy the molecular pathology of human disease by David S Latchman, BIOS scientific publishers, 2010.
- 5. Biotechnology Expanding Horizon, B.D.Singh, 3rd revised edition, Kalyani Publishers, 2010
- 6. NPTEL Source material

LEARNING OBJECTIVES

- 1. Emphasize on the basic aspects of genetic engineering; the key areas and apply the knowledge in vectors used in genetic engineering experiments.
- 2. Apply the properties of various enzymes and vectors in gene and genome manipulation.
- 3. Acquire working knowledge on the mechanism of methods of nucleic acid detection, hybridization and amplification and their applications in the research.
- 4. Acquire working knowledge on the construction of genomic and cDNA libraries their applications in the research and biology of *Bacillus thuringiensis*.
- 5. Identify the various gene transfer techniques in plants, animals and microbes that are essential for controlled protein production in the industry and acquire knowledge on various strategies of Gene therapy and its application in therapeutics.
- Identify and apply the current applications and advances of biotechnology and describe the steps involved in the production of biopharmaceuticals in microbial systems and industrial utilization.

Course Outcomes				ŀ	Progr	amm	e Out	tcom	es					ramme S Outcom	
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	1	1	1	2						1		2	1	2	3
CO 2	1			2	3							2	1	2	3
CO 3		1		2								2	1	2	1
CO 4		1		2								2	1	2	1
CO 5		1	1	2	3	3		3				2	1	2	1
CO 6		1	1	2	3	2	2	3				2	1	2	1

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

Subject
Code:22UBT520C

FUNDAMENTALS OF BIOINFORMATICS

CIE Marks: 50 SEE Marks: 50

L: T: P – 2-2-0 Total Hours/Week: 40

Introduction to Bioinformatics and Biological Database

Introduction to bioinformatics, Components of bioinformatics and interdisciplinary nature of bioinformatics, Classification of biological databases; Primary database: NCBI, GenBank, DDBJ and EMBL, PIR, Uniprot; Secondary databases: PROSITE, PRINTS, BLOCKS and Pfam; Structure databases: Protein Data Bank (PDB), MMDB, CATH, SCOP; Specialized databases: PubMed, OMIM, Metabolic Pathway-KEGG;ExPasy and PubChem databases, File format: GenBank flat file, PDB flat file. Tutorials: Practices on other primary and secondary databases

UNIT–II

UNIT-I

10 Hrs.

12 Hrs.

Sequence alignment and database searches:

Introduction, Types of sequence alignment, Comparison between global and local alignment, Pairwise sequence alignment: Dot matrix analysis, Dynamic programming, Global alignment-Needleman-Wunch algorithm, Local Alignment-Smith & Waterman algorithm, Substitution matrix- BLOSUM and PAM; GAP Penalty; Low complexity regions;Word/k-tuple method- BLAST, FASTA.

Multiple Sequence Alignment:Introduction, applications of MSA; Types of MSA: Progressive method of MSA-Clustal W; Iterative method of MSA; Motifs and Patterns; Statistical models of MSA-Position Specific Scoring Matrix (PSSM) and Profiles.

Tutorials: Solving problems on pairwise sequence alignment

UNIT-III

10 Hrs.

Phylogenetic analysis and predictive methods using sequences

Introduction, concepts of trees, types of evolutionary trees, Rooted and unrooted trees, Steps in constructing phylogenetic trees, Tree building methods - Distance based methods: Neighbor Joining (NJ) method, Fitch-Margoliash (FM) method; Character based method: Maximum parsimony; Tree Evaluation methods, Phylogenetic Softwares.

Predictive Methods using sequences: Structure of Prokaryote and Eukaryote genes; Algorithms for Prokaryotic and Eukaryotic gene prediction, Web based tools for gene prediction (ORF finder, GenScan).Protein Secondary Structure Prediction, Tertiary Structure Predictions: Homology modelling.

Tutorials: Practices on prediction of phylogenetic trees

UNIT-IV 10 Hr
Plasmid mapping and primer designing &molecular modelling techniques
Restriction mapping, Web based tools: Restriction Mapper and REBASE. Utilities of Mac Vector
Vector NTI; Basics of Primer designing, Primer design softwares (PRIME3). Rational Approache
Drug Design, molecular docking, deriving the Pharmacophoric Pattern, quantitative structure-action
relationship (QSAR), deriving bioactive conformations, Calculation of Mole
Properties,Dockingsoftwares (AUTODOCK, HEX)
Tutorials: Solving problems related to Restriction mapping and Primer designing
Reference Books *
1. Introduction to Bioinformatics – Arthur Lesk, Oxford, 2nd Edition, 2006.
2. Bioinformatics – Stuart M Brown, NYU Medical Center, NY USA. 2000.
3. Fundamental Concepts of Bioinformatics – D E Krane & M L Raymer, Pearson, 2006.
 Computational methods for macromolecular sequence analysis – R F Doolittle. Acade Press, 1996.
Course Outcomes**
After completion of the course student will be able to
1. Importance of databases involved in bioinformatics along with their file formats
 Will have idea on searching similar sequences in databases and find similarity between gi set of sequences
3. Derive evolutionary relationship between genes and proteins by phylo-genetic analysis
4. Explain various statistical tools involved in predicting the structure of genes and proteins
5. The principle behind restriction mapping and primer designing
6. Different approaches involved in silico drug design

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course				F	Prog	ramı		Programme Specific							
Outcomes					-			Outcomes							
	1	1 2 3 4 5 6 7 8 9 10 11 12												PSO2	PSO3
CO 1	3	3 2 2 1 2 2 3											2	2	3
CO 2	3	2	2	2	2	1	2	-				3	2	2	3
CO 3	3	2	-	1	-	-	2	-				3	2	2	3
CO 4	2	2	-	1	-	2	-	-				3	1	-	2

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

CO 5	2	2	2	1	-	2	-	2		1	2	-	2
CO 6	2	1	2	2	2	2	1	1		1	1	1	1

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

hur

Subject Code:UBT527E		3 Credits: (3-0-0)
L: T: P – 3-0-0	NUTRACEUTICALS	CIE Marks: 50
Total Hours/Week: 40		SEE Marks: 50

Introduction to Nutraceutical and dietetics

Organizational elements, classification of nutraceuticals, dietary supplements, fortified foods, functional foods and phytonutraceuticals. Scope involved in the industry, Indian and global scenario. Recommended dietary intake (RDA), acceptable dietary intake, nitrogen balance, protein efficiency ratio, net protein utilisation. Basics of energy balance - Basal Metabolic Rate (BMR), Body Mass Index (BMI) and Standard Dynamic Action (SDA) with special reference to nutraceutical industry.

UNIT-II

UNIT-I

10Hrs.

Nutrition related diseases and disorders

Carbohydrates, Protein, amino acids, Fat, vitamins and minerals - Excess and deficiency, symptoms, prevention and management. Role of nutraceuticals with special reference to diabetes mellitus, hypertension, hypercholesterolemia, cancer, glands in the prevention and treatment. Concept of antioxidants - use of antioxidants as dietary supplements in prevention and treatment of cancer, obesity and stress. Role of nutraceuticals and functional foods in pediatrics, geriatrics, sports, pregnancy and lactation.

UNIT-III

Nutraceuticals of microbial, plant and animal origin

Concept of prebiotics and probiotics - principle, mechanism, production and technology involved, applications - examples of bacteria used as probiotics, use of prebiotics in maintaining the useful microflora - extraction from plant sources. Synbiotics for maintaining good health. Algae as source of omega - 3 fatty acids, antioxidants and minerals - extraction and enrichment. Plant secondary metabolites, classification and sub-classification - Alkaloids, phenols, Terpenoids. Animal metabolites - Sources and extraction of nutraceuticals of animal origin. Examples: chitin, chitosan, glucosamine, chondroitin sulphate and other polysaccharides

UNIT-IV

10 Hrs.

Biotechnology in Phytonutraceuticals

Role of medicinal and aromatic plants in nutraceutical industry – propagation - conventional and tissue culture, cultivation, post harvest technology and strategies for crop improvement, development of high yielding lines and yield enhancement, plant genomics and metabolomics. Biofortification and nutritional enhancement.GM foods with enhanced nutraceutical properties.Golden rice, GM Tomatoes

REFERENCE BOOKS

- 6. Israel Goldberg (Ed.) (1999) Functional foods, designer foods, pharma foods, Nutraceuticals, Aspen publishers Inc., USA.
- 7. L. Rapport and B. Lockwood, Nutraceuticals, Pharmaceutical Press., 2nd Edition, 2002.
- 8. M. Maffei , Dietary Supplements of Plant Origin, Taylor & Francis, 1 st Edition, 2003.

10 Hrs.

10 Hrs.

- 9. Shahidi and Weerasinghe, Nutraceutical beverages Chemistry, Nutrition and health Effects, American Chemical Society, 1 st Edition, 2004.
- 10. Richard Neeser& J. Bruce German (2004) Bioprocesses and Biotechnology for Functional Foods and Nutraceuticals, Jean, Marcel Dekker, Inc.
- 11. TimothtS. Tracy, Richard L. Kingston, Herbal Products 2nd Edition, 2007.

LEARNING OBJECTIVES

- 1. To be aware of basic concepts of nutraceuticals and nutrition.
- 2. To have a general idea of scope of nutraceuticals and functional foods.
- 3. To have brief idea about nutrition related health disorders and the role of Nutraceuticals.
- 4. To classify nutraceuticals and the role of nutraceuticals among different age groups.
- 5. To learn about the basic aspects of nutraceuticals derived from microbial, plant and animal origin.
- 6. To know about the role of biotechnology in production of plant secondary metabolites

Course Outcomes				F	Prog	ramı	me C	Outco	ome	s			-	amme Spo Outcomes	
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3	2	-	-	2	1	2	2				3	2	2	3
CO 2	3	2	2	2	2	1	2	-				3	2	2	3
CO 3	3	2	-	1	-	-	2	-				3	2	2	3
CO 4	2	2	-	1	-	2	-	-				3	1	-	2
CO 5	2	2	2	1	-	2	-	2				1	2	-	2
CO 6	2	2 1 2 2 2 1 1 1 1										1	1	1	1

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

Subject Code:220B1506H		Creu	· /
L: T: P – 3-0-0	INDUSTRIAL SAFETY & BIOETHICS	CIE I	Marks: 50
Total Hours/Week: 40		SEE	Marks: 50
			40.11
	UNIT-I		10 Hrs.
ntroduction to Bioethics & Biosaf	-		
•	and biosafety, Ethical implications and need fo		
·	ology. Convention on biological weapons.	Bioterrori	sm-classification of
piological agents with examples.			
Biosafety regulation guidelines		<i>.</i>	
•	mittee (RDAC) ,Institutional Biosafety committe	• •	
	netic Engineering Approval Committee(GEAC), E	Biosafety	guidelines- nationa
guidelines, Cartagena Protocol on			
	UNIT-II		10Hrs.
nazards, Good Lab Practices microorganismBI 1 BI 2 BI 3 BI 4) n	lants (BI 1-P BI 2-P BI 3-P BI 4-P) animals (BI 1-N F		-N BI 4-N)
microorganismBL1,BL2,BL3,BL4) p Risk assessment during laborato	olants (BL1-P,BL2-P,BL3-P,BL4-P) animals (BL1-N,E ory research and risk groups. Recombinant orga Containments; Physical, Biological. Field trial	anisms ar	nd transgenic crops
microorganismBL1,BL2,BL3,BL4) p Risk assessment during laborato Guideline for labeling GM crops.	ory research and risk groups. Recombinant orga	anisms ar	nd transgenic crops
microorganismBL1,BL2,BL3,BL4) p Risk assessment during laborato Guideline for labeling GM crops.	ory research and risk groups. Recombinant organised of the combinant organism of the combinant organism of the combinant organism of the combinant of the combi	anisms ar	nd transgenic crops s using transgeni
microorganismBL1,BL2,BL3,BL4) p Risk assessment during laborato Guideline for labeling GM crops. blants. Food and Pharma safety: Biosafety assessment procedures right, Plant Breeder's Right, Envir	ory research and risk groups. Recombinant orga Containments; Physical, Biological. Field trial UNIT–III for biotech foods and Pharma products. Proc conmental aspects of biotech applications. Spec s. Flavr Savr Tomato as model case, case studie nsing.	anisms an method edure to ial applica	nd transgenic crops s using transgeni 10 Hrs. apply patent, Cop ation of patent law vance (Eg. Bt cottor
microorganismBL1,BL2,BL3,BL4) p Risk assessment during laborato Guideline for labeling GM crops. blants. Food and Pharma safety: Biosafety assessment procedures right, Plant Breeder's Right, Envir n biotechnology and case studies Bt brinjal). Licensing and cross lice	ory research and risk groups. Recombinant orga Containments; Physical, Biological. Field trial UNIT–III for biotech foods and Pharma products. Proc conmental aspects of biotech applications. Spec s. Flavr Savr Tomato as model case, case studie	anisms an method edure to ial applica	nd transgenic crops s using transgeni 10 Hrs. apply patent, Cop ation of patent law
microorganismBL1,BL2,BL3,BL4) p Risk assessment during laborato Guideline for labeling GM crops. blants. Food and Pharma safety: Biosafety assessment procedures right, Plant Breeder's Right, Envir n biotechnology and case studies Bt brinjal). Licensing and cross lice ndustrial safety	ory research and risk groups. Recombinant organ Containments; Physical, Biological. Field trial UNIT–III of for biotech foods and Pharma products. Proc conmental aspects of biotech applications. Spec s. Flavr Savr Tomato as model case, case studie nsing. UNIT–IV	anisms an method eedure to ial applica s of relev	nd transgenic crops s using transgenic 10 Hrs. apply patent, Cop ation of patent law vance (Eg. Bt cottor 10 Hrs.
microorganismBL1,BL2,BL3,BL4) p Risk assessment during laborato Guideline for labeling GM crops. blants. Food and Pharma safety: Biosafety assessment procedures right, Plant Breeder's Right, Envir n biotechnology and case studies Bt brinjal). Licensing and cross lice ndustrial safety Need for safety, importance of occ	ory research and risk groups. Recombinant orga Containments; Physical, Biological. Field trial UNIT–III for biotech foods and Pharma products. Proc ronmental aspects of biotech applications. Spec s. Flavr Savr Tomato as model case, case studie nsing. UNIT–IV cupational safety, Health and safety programs, Sa	anisms an method: edure to ial applica s of relev	nd transgenic crops s using transgenic 10 Hrs. apply patent, Cop ation of patent law vance (Eg. Bt cottor 10 Hrs. nsafe conditions.
microorganismBL1,BL2,BL3,BL4) p Risk assessment during laborato Guideline for labeling GM crops. blants. Food and Pharma safety: Biosafety assessment procedures right, Plant Breeder's Right, Envir n biotechnology and case studies Bt brinjal). Licensing and cross lice ndustrial safety Need for safety, importance of occ Accidents: Accident preventive m	ory research and risk groups. Recombinant organ Containments; Physical, Biological. Field trial UNIT–III of for biotech foods and Pharma products. Proc conmental aspects of biotech applications. Spec s. Flavr Savr Tomato as model case, case studie nsing. UNIT–IV	anisms an method: edure to ial applica s of relev	nd transgenic crops s using transgenic 10 Hrs. apply patent, Cop ation of patent law vance (Eg. Bt cottor 10 Hrs. nsafe conditions.
microorganismBL1,BL2,BL3,BL4) p Risk assessment during laborato Guideline for labeling GM crops. blants. Food and Pharma safety: Biosafety assessment procedures right, Plant Breeder's Right, Envir n biotechnology and case studies Bt brinjal). Licensing and cross lice ndustrial safety Need for safety, importance of occ Accidents: Accident preventive m prevention Safety policy	bry research and risk groups. Recombinant organ Containments; Physical, Biological. Field trial UNIT–III a for biotech foods and Pharma products. Proc conmental aspects of biotech applications. Spec s. Flavr Savr Tomato as model case, case studie nsing. UNIT–IV cupational safety, Health and safety programs, Sa measure, Measurement and control of safety per	anisms an method: edure to ial applica s of relev	nd transgenic crops s using transgenic 10 Hrs. apply patent, Cop ation of patent law vance (Eg. Bt cottor 10 Hrs. nsafe conditions.
microorganismBL1,BL2,BL3,BL4) p Risk assessment during laborato Guideline for labeling GM crops. Dants. Food and Pharma safety: Biosafety assessment procedures right, Plant Breeder's Right, Envir n biotechnology and case studies Bt brinjal). Licensing and cross lice ndustrial safety Need for safety, importance of occ Accidents: Accident preventive m prevention Safety policy Fire: Fire extinguishers and fire ex	bry research and risk groups. Recombinant orgation Containments; Physical, Biological. Field trial UNIT–III for biotech foods and Pharma products. Proc conmental aspects of biotech applications. Spec s. Flavr Savr Tomato as model case, case studie nsing. UNIT–IV cupational safety, Health and safety programs, Sa heasure, Measurement and control of safety per sits, extinguishing agents.	anisms an method: edure to ial applica s of relev	nd transgenic crops s using transgenic 10 Hrs. apply patent, Cop ation of patent law vance (Eg. Bt cottor 10 Hrs. nsafe conditions. e, 5E's for accident
microorganismBL1,BL2,BL3,BL4) p Risk assessment during laborato Guideline for labeling GM crops. Dants. Food and Pharma safety: Biosafety assessment procedures right, Plant Breeder's Right, Envir n biotechnology and case studies Bt brinjal). Licensing and cross lice ndustrial safety Need for safety, importance of occ Accidents: Accident preventive m prevention Safety policy Fire: Fire extinguishers and fire ex Importance of safety in food and	ory research and risk groups. Recombinant orgation Containments; Physical, Biological. Field trial UNIT–III of or biotech foods and Pharma products. Proc conmental aspects of biotech applications. Spec s. Flavr Savr Tomato as model case, case studie nsing. UNIT–IV cupational safety, Health and safety programs, Sa heasure, Measurement and control of safety per kits, extinguishing agents. Pharma industry. Food safety, Biological, chem	anisms an method: edure to ial applica s of relev	nd transgenic crops s using transgenic 10 Hrs. apply patent, Cop ation of patent law vance (Eg. Bt cottor 10 Hrs. nsafe conditions.
microorganismBL1,BL2,BL3,BL4) p Risk assessment during laborato Guideline for labeling GM crops. Dants. Food and Pharma safety: Biosafety assessment procedures right, Plant Breeder's Right, Envir n biotechnology and case studies Bt brinjal). Licensing and cross lice ndustrial safety Need for safety, importance of occ Accidents: Accident preventive m prevention Safety policy Fire: Fire extinguishers and fire ex Importance of safety in food and	bry research and risk groups. Recombinant orgation Containments; Physical, Biological. Field trial UNIT–III for biotech foods and Pharma products. Proc conmental aspects of biotech applications. Spec s. Flavr Savr Tomato as model case, case studie nsing. UNIT–IV cupational safety, Health and safety programs, Sa heasure, Measurement and control of safety per sits, extinguishing agents.	anisms an method: edure to ial applica s of relev	nd transgenic crops s using transgenic 10 Hrs. apply patent, Cop ation of patent law vance (Eg. Bt cottor 10 Hrs. nsafe conditions. e, 5E's for accident
microorganismBL1,BL2,BL3,BL4) p Risk assessment during laborato Guideline for labeling GM crops. Jolants. Food and Pharma safety: Biosafety assessment procedures right, Plant Breeder's Right, Envir n biotechnology and case studies Bt brinjal). Licensing and cross lice ndustrial safety Need for safety, importance of occ Accidents: Accident preventive m prevention Safety policy Fire: Fire extinguishers and fire ex Importance of safety in food and HAACP system, Pharma safety. Foo	ory research and risk groups. Recombinant orgation Containments; Physical, Biological. Field trial UNIT–III of or biotech foods and Pharma products. Proc conmental aspects of biotech applications. Spec s. Flavr Savr Tomato as model case, case studie nsing. UNIT–IV cupational safety, Health and safety programs, Sa heasure, Measurement and control of safety per kits, extinguishing agents. Pharma industry. Food safety, Biological, chem od and safety act. Injuries by industrial sector	anisms an method: edure to ial applica s of relev	nd transgenic crops s using transgenic 10 Hrs. apply patent, Cop ation of patent law vance (Eg. Bt cottor 10 Hrs. nsafe conditions. e, 5E's for accident
microorganismBL1,BL2,BL3,BL4) p Risk assessment during laborato Guideline for labeling GM crops. Dants. Food and Pharma safety: Biosafety assessment procedures right, Plant Breeder's Right, Envir n biotechnology and case studies Bt brinjal). Licensing and cross lice ndustrial safety Need for safety, importance of occ Accidents: Accident preventive m prevention Safety policy Fire: Fire extinguishers and fire ex Importance of safety in food and HAACP system, Pharma safety. Foo 1. Sateesh M.K.(2012),Bioeth	ory research and risk groups. Recombinant orgation Containments; Physical, Biological. Field trial UNIT–III for biotech foods and Pharma products. Proconmental aspects of biotech applications. Species. Flavr Savr Tomato as model case, case studie nsing. UNIT–IV cupational safety, Health and safety programs, Sameasure, Measurement and control of safety per kits, extinguishing agents. Pharma industry. Food safety, Biological, chem od and safety act. Injuries by industrial sector REFERENCE BOOKS	anisms an method: eedure to ial applica s of relev afe and un rformance	nd transgenic crops s using transgenic 10 Hrs. apply patent, Cop ation of patent law vance (Eg. Bt cottor 10 Hrs. nsafe conditions. e, 5E's for accident Physical Hazards

Credits: (3: 0: 0)

Subject Code:22UBT506H

Publishers..

LEARNING OBJECTIVES

- 1. Interpret ethical issues connected with BT and biosafety guidelines.
- 2. Use GLP and GMP at work place.
- 3. Identify biosafety assessment procedures and patent laws.
- 1. Use the safety measures at work place.

Course Outcomes				Prog	gram	ime	Out	com	nes (POs)			Program Specific Outcomes (PSOs)				
	1	2	3	4	1	2	3										
CO1	-	2	1	-	-	3	-	3	-	-	-	-	-	-	3		
CO2	-	-	-	1	2	3	-	-	-	-	-	1	-	2	-		
CO3	1	-	2	-	-	3	-	-	-	-	-	1	-	2	3		
CO4	-	1	-	2	-	3	-	-	1	-	-	-	-	-	2		

ubject Code:22UBT521E		Credits: (3: 0: 0)
L: T: P – 3-0-0	ENVIRONMENTAL BT	CIE Mark	s: 50
Total Hours/Week: 40		SEE Mark	ks: 50
			_
	UNIT-I		10 Hrs.
among soil microorganisms, Bioaccumulation of Toxicant Characteristics of Xenobic	nental BT. Characteristics of soil, microbial flora c biogeochemical role of soil microorganisms. s s otics, Relationship of Bioaccumulation with lation, Process of toxicants uptake, Factors affe	n Chemical	Structure
measurement of bioaccumul	ation. UNIT–II		12Hrs.
Biological Treatment of Was			
•	tato processing industries, dairy industries, be	verages indus	stries, and
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid	tato processing industries, dairy industries, be osition of urban solid wastes, aerobic treatmen waste management through Biotechnologica	t, anaerobic t	reatment
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid	tato processing industries, dairy industries, be osition of urban solid wastes, aerobic treatmen waste management through Biotechnologica al wastes, MoEF rules	t, anaerobic t	reatment involving
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic	tato processing industries, dairy industries, be osition of urban solid wastes, aerobic treatmen waste management through Biotechnologica	t, anaerobic t	reatment
distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- type petroleum. Bioremediation Major contaminants of air, w Bioremediation using microb	tato processing industries, dairy industries, be osition of urban solid wastes, aerobic treatmen waste management through Biotechnologica al wastes, MoEF rules	t, anaerobic t al processes f metal, phos ndicators),	reatment involving 10 Hrs. phate,
vegetable oil industries, po distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- type petroleum. Bioremediation Major contaminants of air, w Bioremediation using microb	tato processing industries, dairy industries, ber osition of urban solid wastes, aerobic treatmen waste management through Biotechnologica al wastes, MoEF rules UNIT–III es, methods of bioleaching, Microbial recovery or vater and soil, Biomonitors of environment (Bioin res, Phytoremediation, Biofilms its applications. E	t, anaerobic t al processes f metal, phos ndicators),	reatment involving 10 Hrs. phate,
vegetable oil industries, por distilleries. Solid Waste Management Basic aspects, general comp biogas generation; Solid Hazardous wastes, Biomedic Bioleaching & Biomining Microbes in Bioleaching- type petroleum. Bioremediation Major contaminants of air, w Bioremediation using microbia Naturally occurring microbia Biotechnology in Biodiversit Value of biodiversity, threa Approaches to Bioresource	tato processing industries, dairy industries, ber osition of urban solid wastes, aerobic treatmen waste management through Biotechnologica al wastes, MoEF rules UNIT–III es, methods of bioleaching, Microbial recovery of rater and soil, Biomonitors of environment (Bioin es, Phytoremediation, Biofilms its applications. E activities, Bio-augmentation. UNIT–IV y Conservation ats to biodiversity, Biosphere reserves and Ec conservation programme, Biotechnological pro- nservation of Biodiversity, BT and its role in ut	t, anaerobic t al processes f metal, phos ndicators), Bio-stimulation cosystem Con pocesses for bi	n of 10 Hrs. 10 Hrs. 10 Hrs. 10 Hrs.

- 1. Environmental Biotechnology by Pradipta Kumar Mahopatra.
- 2. Text book of microbiology by R C Dubey and D K Maheshwari
- 3. Environmental Biotechnology by Foster C.F., John ware D.A., Ellis Horwood Limited, 1987.
- 4. Bioprocess Technology- fundamentals and applications, S O Enfors & L Hagstrom (1992), RIT,.
- 5. Comprehensive Biotechnology Vol. 1-4 : M.Y. Young (Eds.), Pergamon Press.
- 6. Industrial Microbiology : L.E. Casida, Willey Eastern Ltd., 1989.
- 7. Industrial Microbiology : Prescott & Dunn, CBS Publishers, 1987.
- 8. Biotechnology, Economic & Social Aspects : E.J. Dasilva, C Ratledge & A Sasson, Cambridge Univ. Press, Cambridge.

LEARNING OBJECTIVES

- 1. Understand issues and scope of Environmental BT and concepts of Bioaccumulation.
- 2. Develop different treatment methods for waste water by using BT approach.
- 3. Develop different treatment methods for solid waste by using BT approach.
- 4. Apply the knowledge of bioleaching for metal recovery and bioremediation processes to remove environmental contaminants.
- 5. Understand the Value of biodiversity and threats to biodiversity.
- 6. Apply the knowledge of BT in biodiversity conservation.

Course													Program	me	Specific	
Outcomes				I	Prog	ram	me (Dutc	ome	S			Outcomes			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3	
CO 1	2	3	2	2				2		3		1	2	3	1	
CO 2	2	3	2	1				1	2				3	3	1	
CO 3	2	3	2	1				1	2				3	3	1	
CO 4	1	3	2	3				2	2	3			2	3		
CO 5								2		3		3				
CO 6	1	3	2	2					2	2			1	3		

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

22UBT514L	
L: T: P – 0-0- 1	

BIOINFORMATICS LABORATORY

CIE Marks: 50 SEE Marks: 50

Total Hours/Week: 40

LIST OF EXPERIMENTS

- 1. Bibliographic search from PUBMED, SCIRUS and MEDMINER
- 2. Sequence retrieval from Nucleic acid and Protein databases.
- 3. Sequence searches using BLAST Retrieval of homologs, paralogs, orthologs, and Xenologs
- 4. Pair wise comparison of sequences Analysis of parameters affecting alignment.
- 5. Multiple alignments of sequences and pattern determination using PROSITE
- 6. Evolutionary studies / Phylogenetic analysis Analysis of parameters affecting trees.
- 7. Identification of functional sites in Genes / Genomes.
- 8. Secondary structure prediction of proteins and comparison with PDB.
- 9. Restriction mapping: Analysis of maps for suitable molecular biology experiment.
- 10. Primer Design: Factors affecting primer design.
- 11. PDB structure retrieval and visualization: Analysis of homologous structures.
- 12. Determination of ligand-protein interactions using SPDBV/ LIGPLOT
- 13. Superposition of structures Calculation of RMSD.
- 14. Docking studies Analysis of substrate / ligand binding using homologous structures.

REFERENCE BOOKS

- 1. Bioinformatics Andreas D Boxevanis. Wiley Interscience, 1998.
- 2. Bioinformatics David W Mount, cold spring harbor, 2001.
- 3. Bioinformatics A biologists guide to biocomputing and the internet. Stuart M brown,
- 4. Fundamental Concepts of Bioinformatics D E Krane & M L Raymer, Pearson, 2006.
- 5. Computational methods in Molecular Biology S.L.Salzberg, D B Searls, S Kasif, Elsevier, 1998.
- 6. Bioinformatics methods and applications: Genomics, proteomics and drug Discovery s c Rastogi, N. mendiratta & prastogi, phi, 2006.

- 1. Ability to Search literature and sequence databases
- 2. Ability to retrieve and search sequences from databases
- 3. Ability to align pair wise and multiple sequences
- 4. Ability to identify evolutionary and relationships and functional sites in genomes
- 5. Ability to evaluate primer designing and restriction mapping
- 6. Ability to docking and superimpose the structures

Course Outcomes				F	Progr		Programme Specific Outcomes								
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1	3	3	3	-	3	1	-	3				3	3	3	1
CO 2	3	3 3 3 - 3 1 3												3	1

CO 3	3	3	2	2	3	1	1	-		3	3	3	1
CO 4	3	3	2	-	3	-	1	-		3	2	3	2
CO 5	3	З	2	1	3	1	-	2		З	3	3	2
CO 6	3	3	3	2	3	1	-	1		3	2	3	1

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

hur

22UBT515L L: T: P – 0-0- 1

Total Hours/Week: 40

lab.

GENETIC ENGINEERING LABORATORY

Credits: (0: 0: 2)						
CIE Marks: 50						
SEE Marks: 50						

LIST OF EXPERIMENTS 1. Transformation.-2. Blue white colony screening. 3. Thermal denaturation of DNA. 4. Restriction Digestion. 5. Ligation Experiment. 6. Southern Blotting – Agarose Gel Electrophoresis 7. Electroblotting and analysis. 8. SOP for PCR 9. SOP for Gel Documentation 10. SOP for UV-Spectrophotometer 11. SOP for Lyophilizer 12. PCR (Amplification with specific primers) **REFERENCE BOOKS** 1. Sadashiva and Manickam, "Biochemical Methods", 2nd Edition, New age international Publishers.2017. 2. Sambrook & amp; Russell, "Molecular Cloning", Cold Spring Harber Lab, 3rd Edition, 2002. 3. Current protocols in molecular biology-Greena Publishing Associates, NY, 1988 **COURSE OUTCOMES** 1. To demonstrate proficiency in Transformation and screening of transformants. 2. To apply the knowledge of thermal denaturation to calculate Tm value. 3. To evaluate the functions of restriction digestion and Ligation on DNA. 4. To demonstrate proficiency in Electro-blotting and detection. 5. To demonstrate understanding of SOP and PCR. 6. To gain knowledge in common and advanced laboratory practices in Genetic engineering

Programme Specific Course **Programme Outcomes** Outcomes Outcomes PSO1 PSO2 PSO3 1 3 4 5 9 10 11 12 2 6 7 8 _ _ 3 CO 1 3 3 3 3 1 3 3 3 1 CO 2 3 3 3 3 1 3 2 3 1 ---

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

CO 3	3	3	2	2	3	1	1	-		3	3	3	1
CO 4	3	3	2	-	3	-	1	-		3	2	3	2
CO 5	3	3	2	1	3	1	-	2		3	3	3	2
CO 6	3	3	3	2	3	1	-	1		3	2	3	1

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

hur

SI.	Subject	Subject Name	Credi	н	our	S		amina Mark	
No	Code		ts	L	т	Ρ	CI E	SE E	Tot al
1	UBT704C	Economics and Plant Design	3	3	0	0	50	50	100
2	UBT715C	Downstream Processing Technology	3	2	2	0	50	50	100
3	UBT72XE	Elective- 4	3	3	0	0	50	50	100
4	UBT73XE	Elective-5	3	3	0	0	50	50	100
	UBT716H	Industrial Management and				0	50	50	100
5	001/1011	Entrepreneurship	3	3	0				
6	UXX7XXN	Open Elective-3	3	3	0	0	50	50	100
7	UBT711I	Industrial Internship	2	0	0	4	50	50	100
8	UBT710L	Bioseparation Techniques Lab	1	0	0	2	50	50	100
9	UBT701T	Technical Seminar	1	2	0	0	50	50	100
	1	1		1	2	6	45	45	900
		Total	22	9			0	0	

VII-Semester -2022-23

Elective-4

UBT722E: Aquaculture & Marine biotechnology UBT724E: Food processing technology design

-

Elective- 5

UBT731E: Nanobiotechnology & biomaterials UBT733E: Bioconjugative technology UBT723E: Dairy Biotechnology UBT725E:Protein Engineering and Drug

UBT732E: Computational biology UBT734E: Food Biotechnology

UBT704C		3 Credits: (3	5: 0: 0)
L: T: P – 3-0-0	ECONOMICS & PLANT DESIGN	CIE Marks	: 50
Total Hours/Week:]	SEE Marks	s: 50
	UNIT-I		10 Hrs.
flow diagrams, preliminary specifications, and materia General design considerat Marketability of the produc utilities, site characteristics	design information from the literature and other design and equipment design and specializatior Ils of construction.	n, safety factors nan resources, la id control, utilitio	nd and es,
factors. Safety and hazard	control measures.	•	
	UNIT–II		12Hrs.
costs,(including equipment utilities),working capital inv			
costs,(including equipment utilities),working capital inv Manufacturing costs and p Manufacturing Costs: Direc maintenance and repair, op	t, instrumentation, piping, electrical installation a vestments. blant overheads: ct Production costs (including raw materials, hun perating supplies, power and other utilities, roya	and other nan resources, Ilties, etc.), fixed	-
costs,(including equipment utilities),working capital inv Manufacturing costs and p Manufacturing Costs: Direc maintenance and repair, op	t, instrumentation, piping, electrical installation a vestments. Diant overheads: ct Production costs (including raw materials, hun perating supplies, power and other utilities, roya tration, safety and other auxiliary services, Conce	and other nan resources, Ilties, etc.), fixed	- .
costs,(including equipment utilities),working capital inv Manufacturing costs and p Manufacturing Costs: Direc maintenance and repair, op Plant Overheads: Administ	t, instrumentation, piping, electrical installation a vestments. blant overheads: ct Production costs (including raw materials, hun perating supplies, power and other utilities, roya	and other nan resources, Ilties, etc.), fixed	-
costs, (including equipment utilities), working capital inv Manufacturing costs and p Manufacturing Costs: Direc maintenance and repair, op Plant Overheads: Administ Cost analysis Cost Analysis: Factors invol the capital investment. Est	t, instrumentation, piping, electrical installation a vestments. Diant overheads: ct Production costs (including raw materials, hun perating supplies, power and other utilities, roya tration, safety and other auxiliary services, Conce UNIT–III lved in project cost estimation, methods employ imation of working capital	and other nan resources, alties, etc.), fixed eptual numerical ed for the estim	10 Hrs. ation of
costs,(including equipment utilities),working capital inv Manufacturing costs and p Manufacturing Costs: Direc maintenance and repair, op Plant Overheads: Administ Cost analysis Cost Analysis: Factors invol the capital investment. Est	t, instrumentation, piping, electrical installation a vestments. Dant overheads: ct Production costs (including raw materials, hun perating supplies, power and other utilities, roya tration, safety and other auxiliary services, Conce UNIT–III lved in project cost estimation, methods employ imation of working capital pe of depreciation methods of and calculations, C	and other nan resources, alties, etc.), fixed eptual numerical ed for the estim	10 Hrs. ation of erical.
costs,(including equipment utilities),working capital inv Manufacturing costs and p Manufacturing Costs: Direc maintenance and repair, op Plant Overheads: Administ Cost analysis Cost Analysis: Factors invol the capital investment. Est Depreciation: different typ	t, instrumentation, piping, electrical installation a vestments. Diant overheads: ct Production costs (including raw materials, hun perating supplies, power and other utilities, roya tration, safety and other auxiliary services, Conce UNIT–III lved in project cost estimation, methods employ imation of working capital	and other nan resources, alties, etc.), fixed eptual numerical ed for the estim	10 Hrs. ation of
costs,(including equipment utilities),working capital inv Manufacturing costs and p Manufacturing Costs: Direct maintenance and repair, op Plant Overheads: Administ Cost analysis Cost Analysis: Factors invol the capital investment. Est Depreciation: different typ Profitability analysis Methods for the evaluation	t, instrumentation, piping, electrical installation a vestments. Dant overheads: ct Production costs (including raw materials, hun perating supplies, power and other utilities, roya tration, safety and other auxiliary services, Conce UNIT–III lved in project cost estimation, methods employ imation of working capital pe of depreciation methods of and calculations, C	and other nan resources, alties, etc.), fixed eptual numerical ed for the estim Conceptual num	10 Hrs. ation of erical. 10 Hrs.
costs,(including equipment utilities),working capital inv Manufacturing costs and p Manufacturing Costs: Direct maintenance and repair, op Plant Overheads: Administ Cost analysis Cost Analysis: Factors invol the capital investment. Est Depreciation: different typ Profitability analysis Methods for the evaluation	t, instrumentation, piping, electrical installation a vestments. Dant overheads: ct Production costs (including raw materials, hun perating supplies, power and other utilities, roya tration, safety and other auxiliary services, Conce UNIT–III lved in project cost estimation, methods employ imation of working capital be of depreciation methods of and calculations, C UNIT–IV n of profitability. Return on original investment,	and other nan resources, alties, etc.), fixed eptual numerical ed for the estim Conceptual num	ation of erical.

Publishing House.

5. Khanka SS (2004) Entrepreneurship Development, S Chand & Co.

Thomas W. Zimmer, Norman M. Scarborough.(2007), Essentials of Entrepreneurship and small Business Management

LEARNING OBJECTIVES

COURSE OUTCOMES

At the end of the course the student should be able to:

- 1. Acquire knowledge in the design of a plant.
- 2. Conduct preliminary feasibility study of the plant design assigned.
- 3. Estimate the cost analysis involved in the design of a chemical plant.
- 4. Analyze the project profitability and alternative investments for the selection of good investment projects
- 5. Develop entrepreneurs with substantial knowledge in engineering concepts.
- 6. Apply the knowledge of plant design and cost estimation in actual engineering problems.

Course Outcomes		Programme Outcomes												Programme Specific Outcomes			
Outcomes														Juccome	\$		
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3		
CO 1	2	2	1	1			1	1	1		2		2				
CO 2	2	1	2	1			1	1	1		3		2				
CO 3	1	2	1	2			1	1	1		2		1				
CO 4	2	1	2	2			1	1	1		3		2				
CO 5	1	1	2	1			1	1	1		2		1				
CO 6	2	2	2	1			1	1	1		2		2				

	Subject Code: 22
DOWNEED	UBT715C
DOWNSTR	L: T: P – 2-2-0

Total Hours/Week: 40

REAM PROCESSING TECHNOLOGY

CIE Marks: 50 SEE Marks: 50

UNIT-I 10 Hrs. Introduction Role and importance of downstream processing in biotechnological processes. Range and characteristics of bioproducts. Purification process of bio-product. Cell disruption methods for intracellular products; physical, chemical and mechanical methods. Basic principles of distillation, crystallization, centrifugation, ultracentrifugation (preparative and analytical). Types of centrifuges and rotors,centrifugation-differential,density gradient (zonal and isopycnic). **UNIT-II** 12Hrs. Primary Recovery Operations Process involved in liquid-liquid extraction, solid-liquid extraction, ammonium sulphate precipitation, Precipitation of proteins and nucleic acids by solvents and polyethylene glycol, dialysis, electrodialysis, ultrafiltration (Removal of insolubles by filtration), reverse osmosis, drying and lyophilization. Membrane based separations theory, design and configuration of membrane separation equipment. UNIT-III 10 Hrs. Chromatography Principles of chromatographic seperations, Classification of chromatography- plain and column chromatography, Paper chromatography - Single dimensional (Ascending and Descending, radial and two dimensional) chromatography, partition coefficient, retention factor, Thin layer chromatography, Gas liquid Chromatography, Adsorption Chromatography: Adsorption column chromatography, Ion Exchange Chromatography: cation Exchange and anion Exchange chromatography. Gel Filtration Chromatography, Affinity Chromatography, High Performance liquid chromatography, NP-HPLC and RP-HPLC. UNIT-IV 10 Hrs. Electrophoresis Electrophoresis principles, factors affecting electrophoresis mobility, Moving boundary electrophoresis, Zone Electrophoresis, Gel Electrophoresis, Continuous Gel electrophoresis, Disc Gel electrophoresis, Agarose Gel Electrophoresis, Capillary Electrophoresis, Cellulose Acetate, Starch Gel, Native and SDS-PAGE, High voltage electrophoresis, Isoelectric focusing,

Immunoelectrophoresis, ELISA, Flow cytometry.

Downstream Processes

Case studies (production)-DSP flowsheets for penicillin, insulin, amino acid, monoclonal antibody.

REFERENCE BOOKS

- 1. BioseparationsPrinciples and techniques, by B.Sivasankar, Kindle edition,PHI Publishers, 2010
- 2. Biophysical chemistry principles and Techniques by Upadhay and Nath, Himalaya Publishing House, 3rd edition, 2010
- 3. NPTEL Source material.
- 4. Bioseparations Downstream processing for biotechnology by Belter P.A., Cussier E. and Wei Shan Hu., Wiley Interscience Pub, 1988
- 5. Separation Processes in Biotechnology by Asenjo J. and Dekker M, 1993.
- 6. Product Recovery in Bioprocess Technology BIOTOL Series, VCH, 1990
- 7. Rate controlled separations by Wankat P.c., Elsevier, 1990
- 8. Fermentation & Enzyme Technology by D.I.C. Wang, Wiley Eastern 1979

LEARNING OBJECTIVES

COURSE OUTCOMES

- 1. Identify the basic separation unit operation in DSP like membrane separation, enrichment operation, product recovery and various resolutions and fractionation techniques.
- 2. Interpret and analyze the industrial fermentation processes.
- 3. Apply the knowledge in identifying various pharma and R&D sections.
- 4. Analyse the details of experimentation pertaining to chromatography and electrophoresis.
- 5. Understand analyse and apply the techniques in various tests involved in finding out purity of biological components.
- 6. Apply the knowledge in identifying various biochemicals using advanced purifications like HPLC and to demonstrate DSP flowsheets.

Course		Programme Outcomes												Programme Specific			
Outcomes														Outcomes			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3		
CO 1			2			3	2	2				1	2	1	1		
CO 2			2			3	2	3				1	2	1	1		
CO 3			1			3	2	2				1	2	1	1		
CO 4			2			3	2	2				1	2	1	1		
CO 5			1			3	3	3				1	2	1	1		
CO 6			1			3	2	2				2	2	1	1		

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

UBT724E		
L: T: P – 2-2-0	FOOD PROCESSING TECHNOLOGY	CIE Marks: 50
Total Hours/Week: 40		SEE Marks: 50
	UNIT-I	10 Hrs.
Introduction		
Constituents of food, soluble	e fibres, protein rich foods, popular fats and o	ils in foods, Food flavours,
Browning reactions and its e	ffects . Intrinsic and extrinsic parameters of fo	oods, effect of inhibitors,
pH and temperature. Minera	als in foods. Aroma compounds in foods .Food	d additives, Vitamins,
amino acids. Sweeteners. Fo		
	ood colours. Toxic-trace elements in food.	
	ood colours. Toxic-trace elements in food. UNIT–II	12Hrs.
	UNIT–II	12Hrs.
Detection of Microorganism	UNIT–II	
Detection of Microorganism Culture, Microscopic and Sar	UNIT–II ns	ne Filters, Microscope
Detection of Microorganism Culture, Microscopic and Sar colony Counts, Agar Droplets	UNIT–II ns mpling Methods, Conventional; SPC, Membra	ne Filters, Microscope Dyereduction, Roll Tubes,
Detection of Microorganism Culture, Microscopic and Sar colony Counts, Agar Droplets Direct, Microscopic Count (D	UNIT–II ns mpling Methods, Conventional; SPC, Membra s, Dry Films, Most probable Numbers (MPN),	ne Filters, Microscope Dyereduction, Roll Tubes, s, Air Sampling,
Detection of Microorganism Culture, Microscopic and Sar colony Counts, Agar Droplets Direct, Microscopic Count (D Metabolically Injured Organi	UNIT–II ns mpling Methods, Conventional; SPC, Membra s, Dry Films, Most probable Numbers (MPN), DMC), Microbiological Examination of surfaces	ne Filters, Microscope Dyereduction, Roll Tubes, s, Air Sampling, rne Organisms. Dairy

Food Spoilage & Preservation

Subject Code: 22

The Role and Significance of Microorganisms, Primary Sources of Microorganisms found in Foods Synopsis of common borne bacteria, Molds& Yeasts. Microbial Spoilage of Vegetables, Fruits, Fresh and Processed Meats, Poultry, and Seafood. Spoilage of Miscellaneous Foods, Food Preservation: Principles Underlying in spoilage and preservation, Application, Effect and Legal Status of Food Irradiation, Food Preservation with Low Temperatures, High Temperatures and Drying. Food Industry: Characteristics of Food Industry.:, nutritional food supplements. Food packaging, New trends in packing, edible films. Factors influencing food product development, marketing, and promotional strategies, risks and benefits of food industry.

UNIT-IV

UNIT-III

vegetable processing: Jam, jelly, Juice, squash, wine, pickles and sauerkraut

10 Hrs.

10 Hrs.

3 Credits: (3: 0: 0)

Food Engineering

Properties of fluid foods, Measurement of rheological parameters .Thermal properties of frozen foods. Food freezing equipment, storage of frozen foods. Food dehydration: Freeze Dehydration Calculation of drying times. Food waste management.

REFERENCE BOOKS

- 1. Food Science & Nutrition, by Sunetra Roady, Oxford University Press, 2007.
- 2. Food microbiology by William Frazier and Westhoff D.C, 4thEdn,TATA McGraw Hill

Pub(2005)

- 3. Modern Food Micro-Biology by James M.Jay, CBS Publishers.2005.
- 4. Food Microbiology by K.Vijay RameshMJP Publishers, 2007.
- 5. Plant biotechnology In Agriculture by K. Lindsey and M.G.K. Jones, Prentice Hall, USA. 1990.
- 6. Food Science By Potter N.N. and Joseph Hotchkiss, 5thEdn, CBSPub, 1996.

LEARNING OBJECTIVES

COURSE OUTCOMES

- 1. Able to know about basic constituents of food
- 2. Able to know the techniques involved in detection of microbes in food industry
- 3. To have idea about Dairy, fruits and vegetable processed products and production
- 4. To be aware of different food spoilage and preservation techniques
- 5. To know the Characteristics of food industry and scope
- 6. Able to understand Basic concepts in food Engineering for preservation

Course						Programme Specific									
Outcomes		Programme Outcomes Programme Specific Outcomes													
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3
CO 1			2			3	2	2				1	2	1	
CO 2			2			3	2	3				1	2	1	
CO 3			1			3	2	2				1	2	1	
CO 4			2			3	2	2				1	2	1	
CO 5			1			3	3	3				1	2	1	
CO 6			1			3	2	2				2	2	1	

3 Credits: (3: 0: 0)
CIE Marks: 50
SEE Marks: 50

UNIT-I	10 Hrs.
ntroduction to nanotechnology	
A Brief History of the Nano particles : Bottom-Up versus Top-Down; What Is	
Nanobiotechnology.Discussions on nanofabrication, nanolithography, nanotubes, buckybal	
structure-property relationships in materials, materials characterization techniques, scanni	-
electron, scanning tunneling and atomic force microscopy(SEM,STM & AFM), biomolecule- nteractions, quantum dots,	surface
Applications of nanotechnology in the life sciences:	
Buckyballs and Buckytubes, Diagnostics and Sensors, Drug Delivery Revenues Health Risks a	and
Challenge.	
UNIT–II	12Hrs.
Biopolymers	
Polymers as biomaterials, microstructure, mechanical properties – effects of environment of	on
elastic moduli, sterilization and disinfections of polymeric materials. Biocompatibility of poly	/mers,
chemically modified glycosaminoglycans, heparin like substances from nonglycosaminoglyc	an
polysaccharides and microbial glycosaminoglycan, surface immobilized heparins.	
UNIT–III	10 Hrs.
Synthetic polymers	
Polymers in biomedical use, polyethylene and polypropylene, perfluorinated polymers, acr	ylic
oolymers, hydrogels, polyurethanes, polyamides, biodegradable synthetic polymers, silicon	e
ubber, plasma polymerization, micro-organisms in polymeric implants, polymer sterilizatio	n.
UNIT–IV	10 Hrs.
Biocompatibility	
Definition, Wound healing process-bone healing, tendon healing. Material response: Functi	ion and
Degradation of materials in vivo. Host response: Tissue response to biomaterials . Testing o	f
mplants: Methods of test for biological performance-In vitro implant tests, In vivo implant	test
nethods.	
Medical devices	
Polyurethane elastomers, applications of polymers in medicine and surgery. Skin graft poly Properties of implant materials, metals and alloys.	mers,

hur

REFERENCE BOOKS

TEXT BOOKS:

- 1. B.Vishwanath "Nano Materials" Published by Narosa Publishing House Pvt. Ltd., New Delhi, 2011.
- 2. K Eric Drexler "Unbounding the future" Quill,1993.
- 3. Stephen Lee and Lynn M Savage "Biological molecules in Nanotechnology" 2010.
- 4. Mark Ratner and Daniel Ratner "Nanotechnology: A Gentle Introduction to Next Gig Idea" Pearson Ecducation Ltd, 2003.

LEARNING OBJECTIVES

COURSE OUTCOMES

- 1. Ability to explain the characterization techniques of nanotechnology.
- 2. Ability to understand the importance of nano-particles in drug delivery system.
- 3. Ability to understand the importance of biopolymers.
- 4. Ability to differentiate biopolymer and synthetic polymer.
- 5. Ability to understand the importance of biocompatibility.
- 6. Ability to apply the methods to test the implants and use in medical devices.

Course		Programme Outcomes												Programme Specific			
Outcomes						Outcomes											
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3		
CO 1	2	3	3			1	2					2	2	2	1		
CO 2	1	2	3			1	2					3	3				
CO 3	2	2	3			2	2	3				3	2	2	1		
CO 4	3	3	3			2	2	2				2	2	1	1		
CO 5	3	3	3			1	2	3				1	2	3			
CO 6	2	3	3			3	3	3				3	3	3	3		

Subject Code: 22

UBT716H

L: T: P – 3-0-0 Total Hours/Week: 40

INDUSTRIAL MANAGEMENT AND ENTREPRENEURSHIP

3 Credits: (3: 0: 0)

CIE Marks: 50 SEE Marks: 50

UNIT-I	10 Hrs.								
DEVELOPMENT OF MANAGEMENT THOUGHTS AND ITS FUNCTIONS									
Concept & definition of Management, Social Responsibilities of Management, and Pioneers	in								
Management: Contributions of Taylor, Henry Taylor, Gilberth & Mayo, Schools of Managen	nent								
thought: Management process school, Empirical School, Human Behavior School, Social sys	tem								
school, Systems approach school and decision theory school. Selection of site for the plant	and								
plant layout, plant operation and control, utilities, structural design, storage, material hand	ling,								
Sources of capital. Definition and functions of administration. Planning, organizing, staffing	5,								
directing and controlling. Concept of authority and responsibility.									
UNIT–II	12Hrs.								
QUANTITATIVE TECHNIQUES IN MANAGERIAL DECISIONS									
Concept of productivity, measuring productivity, concept of budget, effective budgetary control, ABC analysis, break even analysis, product life cycle, promotion of sales, pricing, "EOQ"model. Production costs (including raw materials, and repair, operating supplies, power and other utilities, royalties, etc.), fixed charges (including depreciation, taxes, insurance, rental costs etc.).									
UNIT–III	10 Hrs.								
PRODUCTION AND MATERIAL MANAGEMENT									
Types of production, types of planning, manufacturing planning, factory planning, production	on								
planning, method study, systems of wage payments, bonus, automation, organization of									
production, planning. Functions of purchasing & materials management, quality, quality sta	andard &								
inspection, sources of supply, pricing, principles & practices, Inventory management.									
UNIT–IV	10 Hrs.								
ENTREPRENEURSHIP & PERSONNEL MANAGEMENT									
Meaning of entrepreneur, evaluation of the concept, function of entrepreneur, evolution c	of								
entrepreneurship, development of entrepreneurship, stages in entrepreneurial process, rol	e of								
entrepreneurs in economic development entrepreneurship- its barriers. Recruitment and se	election.								
Training of personnel. Employer - Employee relationship. Settlement of disputes.									
REFERENCE BOOKS									
1. O.P. Khanna - "Industrial Engineering & Management", Dhanpat Rai & Sons, 199	92.								
 T. R. Banga & s. C. Sharma - "Industrial Engineering & Management Science", 6t Khanna Publications, 2003 	h. Edn,								
3. C.B.Mamoria and S.V.Gankar- Personnel Management, Himalaya Pub, 21 st edn,	,2010								
4. Veerabhadra Havinal - Management and Entrepreneurship- New Age Internation									
5. Ramesh Burbure – Management & Entrepreneurship- Rohan Pub.2008	-								

6. Poornima M. Charanthimath – Entrepreneurship Development, Pearson Education-2005

LEARNING OBJECTIVES

COURSE OUTCOMES

- 1. Ability to recall and recollect the history theories and definition of management and its importance in society
- 2. To analyze and apply the basic concepts of Quantitative techniques of management
- 3. Ability to know the difference between production and productivity, measurement and cost analysis
- 4. Explore the knowledge of production costs, planning and material management
- 5. Able to make basic economic analysis of project
- 6. To be aware of making business ideas and prepare project planning
- 7. Ability to understand the role and importance of entrepreneurship in economic development
- 8. Ability to know the importance of personnel management

Course		Programme Outcomes												Programme Specific			
Outcomes														Outcomes			
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3		
CO 1	2	2		3	2		1					1	2	1	1		
CO 2	2	1	2	3	2		1						2	1	2		
CO 3	1	2	1	2	2		1					1	2	1	2		
CO 4	2	1	2	3	1		1						2	1	3		
CO 5	1	1	2		2		1					1	2	1	3		
CO 6	2	3	2	1		2							2	1	3		
CO 7	2	1	3	1								1	2	1	2		
CO 8	1	2	1										2	1	2		

Subject Code: 22

UBT710L L: T: P – 2-2-0

BIOSEPARATION TECHNIQUES LAB

3 Credits: (3: 0: 0)

CIE Marks: 50 SEE Marks: 50

Total Hours/Week: 40

LIST OF EXPERIMENTS

- 1. Cell disruption techniques.
- 2. Solid-liquid separation methods: Filtration (Cross flow)
- 3. Solid-liquid separation methods: Sedimentation.
- 4. Solid-liquid separation methods: Centrifugation.
- 5. Membrane dialysis
- 6. Product enrichment operations: Precipitation (NH4)2 SO4 fractionation of a protein.
- 7. Product enrichment operations: Two phase aqueous extraction.
- 8. Product drying techniques.
- 9. Estimation of Amino acids / Carbohydrates by TLC.
- 10. Separation of ethanol from fermented broth.
- 11. Separation of Citric acid from fermented broth.
- 12. Separation of proteins by molecular sieving.
- 13. Analysis of biomolecules by HPLC / GC (using standard spectra).

REFERENCE BOOKS

- 1. Protein Purification by Scopes R.K., IRL Press, 1993.
- 2. Rate controlled separations by Wankat P.C., Elsevier, 1990
- 3. Bioseparations by Belter P.A. and Cussier E., Wiley, 1985.
- 4. Bio-separations Science & Engineering By Roger G Harrison, Paul Todd, Scott R Rudge, Demetri.
- 5. Product Recovery in Bioprocess Technology BIOTOL Series, VCH, 1990
- 6. Separation processes in Biotechnology by Asenjo J. and Dekker M. 1993

LEARNING OBJECTIVES

COURSE OUTCOMES

- 1. Able to prepare/reproduce the protocols for the experiments.
- 2. Able to extract the intracellular product using different cell disruption techniques.
- 3. Able to concentrate, purify the desired product using different chromatography/ filtration techniques.
- 4. Able to analyze the product both quantitative/qualitatively.
- 5. Able to record/observe the experimental data and interpret them in the graph/table.
- 6. Able to calculate the result and to write the conclusion at the end of the experiment.

Course Outcomes		Programme Outcomes												Programme Specific Outcomes		
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	PSO3	
CO 1	3												3		1	
CO 2		2												3	1	
CO 3			3										2	2	1	
CO 4				3	3								2	2	1	
CO 5		3										2	2	3	1	
CO 6		3										2	3	2	1	

Principal, Basaveshwar Engineering College, BAGALKOT-587 102,

Jung

22UCH111C/211C	CHEMISTRY FOR COMPUTER	Credits: 04
L:T:P: 3:0:1		CIE Marks:50
Total Hours/week: 05	SCIENCE (CS) STREAM	SEE Marks:50
Hrs		

UNIT - I

10 Hrs

10 Hrs

Energy Systems

Electrode System: Introduction, types of electrodes. Reference electrode; Introduction, calomel electrode – construction, working and applications of calomel electrode. Ion selective electrodes; Introduction, construction, working and applications of glass electrode. Determination of pH using glass electrode. Concentration cell; Definition, construction and working. Numerical problems.

Battery Systems: Introduction to batteries, construction, working and applications of Lithium ion and Sodium ion batteries.

Green Fuels: Introduction, construction and working of solar photovoltaic cell, advantages, and disadvantages. Quantum Dot Sensitized Solar Cells (QDSSC's); Principle, Properties and Applications. Generation of energy (green hydrogen) by electrolysis of water and its advantages.

Self Study: Characteristics of batteries & Introduction to Fuel cell, MeOH - O2 fuel cell, Applications.

UNIT – II

Corrosion Science and Polymers

Corrosion: Introduction, electrochemical theory of corrosion, types of electrochemical corrosion; differential metal corrosion and differential aeration corrosion (Waterline and Pitting). Factors affecting rate of corrosion. Penetration Rate (CPR); Introduction and numerical problems.

Corrosion control: Introduction, Metal coating; Galvanization, surface conversion coating; Anodization and cathodic protection; Sacrificial anodic method.

Polymers: Introduction, Monomer, polymer, polymerization, degree of polymerization. Glass transition temperature (Tg), factors affecting Tg. Molecular weight - Number average and Weight average molecular weight and numerical problems. Conducting polymers; Synthesis and conducting mechanism of polyacetyline (n & p type) and commercial applications. Preparation, properties and commercial applications of Silicon rubber.

Self Study: Stress corrosion and Biodegradable polymers.

UNIT - III

Nano materials and display systems

Nanomaterials: Introduction, size dependent properties of nanomaterials (Surface area, Catalytic, Conducting), preparation of nanomaterials by sol-gel and co-precipitation method with example.

Liquid crystals (LC's); Introduction, classification, positional and orientational order, director, requirement of a substance to exhibit liquid crystal state. Chemical constitution and liquid crystalline behavior, molecular ordering in liquid crystal phase, liquid crystal behavior in homologous series; PAA and MBBA homologous series, electro-optic effect in liquid crystals, construction of liquid crystal display and applications of Liquid Crystal in Displays.

Light Emitting Diode (LED): Introduction, working principle of LED. Application of LED.

Organic Light Emitting Diode (OLED): Introduction, Anatomy of OLED, Types of OLED. Comparison between LED and OLED. Advantages and Disadvantages of OLED, Applications of OLED. Quantum Light Emitting Diodes (QLED's); Properties and applications.

Self Study: Light emitting electrochemical cells.

UNIT - IV

10 Hrs

Analytical Techniques & E-Waste Management

Analytical Techniques: Sensors, Introduction, basic principle of sensor, Types of sensors; Conductometric sensors, Electrochemical sensors, Thermometric sensors, and Optical sensors. Potentiometric sensors; Introduction, principle, working and application in the estimation of iron. Colorimetric sensors; Introduction, principle, working and application in the estimation of copper. Conductometric sensors; Introduction, principle, working and application in the estimation of weak acid.

E-Waste: Introduction, sources of e-waste, Composition, Characteristics, and Need of e- waste management. Toxic materials used in manufacturing electronic and electrical products, health hazards due to exposure to e-waste. Recycling and Recovery; Different approaches of recycling (separation, thermal treatments, hydrometallurgical extraction, pyrometallurgical methods, direct recycling). Extraction of gold from E-waste. Role of stake holders in environmental management of e-waste (producers, consumers, recyclers, and statutory bodies).

Self Study: Impact of heavy metals on environment & human health and control measures.

10 Hrs

PRACTICAL CONTENT

List of Experiments

UNIT-I : Compulsorily conducting experiments

- 1. Estimation of total hardness of water by EDTA method
- 2. Potentiometric estimation of FAS using K2Cr₂O₇
- 3. Determination of pKa of vinegar using pH sensor (Glass electrode)
- 4. Estimation of Copper present in electroplating effluent by optical sensor (colorimetry)
- 5. Conductometric estimation of acid mixture
- 6. Estimation of iron in TMT bar by diphenyl amine/external indicator method
- 7. Determination of Alkalinity of given water sample by dual indicator method.
- 8. Determination of Viscosity coefficient of lubricant (Ostwald's viscometer)

UNIT-II: Virtual experiments (any one)

- 1. Electro-gravimetric estimation of metals
- 2. Preparation of urea formaldehyde resin
- 3. Synthesis of iron oxide nanoparticles
- 4. Electrolysis of water

UNIT-III: Open Ended Experiments (any one)

- 1. Measurements of IV characteristics of Photovoltaic Cell
- 2. Determination of percentage of copper in present the brass solution.
- 3. Determination of CaO in cement solution
- 4. Determination of manganese dioxide in pyrolusite ore

Reference books:

- 1. Wiley (2013), Engineering Chemistry (2nd edition), Wiley India Pvt. Ltd. New Delhi.
- 2. Satyaprakash & Manisha Agrawal (2012), Engineering Chemistry (1st edition), Khanna Book Publishing, Delhi.
- Shashi Chawla (2003), A Text Book of Engineering Chemistry (3rd edition), Dhantpat Rai & Co. Pvt., Pub. Delhi.
- 4. Bahl.B.S., Arun Bahl &Tuli.G.D (2010), Essentials of Physical Chemistry (1st edition), S.Chand Publishing.
- 5. Sunita Rattan (2011), Applied Chemistry (3rd edition), S.K. Kataria & Sons.

- 6. Dr. Chinnappan Baskar, Dr.Shikha Baskar & Dr.Ranjit S.Dhillon (2012), Engineering Chemistry (1st edition), Wiley India Pvt. Ltd.
- Gourkrishna Dasmohapatra (2017), Engineering Chemistry (4th edition), Vikas Publishing
- Dhara.S.S. & Umare.S.S (2010), Engineering Chemistry (12th edition), S. Chand & Company Ltd., Delhi.
- 9. Gadag R.V. and Nityananda Shetty (2016), A Text Book of Engineering Chemistry (2nd edition), I. K. International Publishing house.
- Billmeyer.F.W. (1999), Text Book of Polymer Science (4th edition), John Wiley & Sons.
- 11. Ozin.G.A. & Arsenault.A.C. (2005), Nanotechnology A Chemical Approach to Nanomaterials (2nd edition), RSCPublishing.
- 12. Fontana.M.G., Greene.N.D. (1996), Corrosion Engineering (3rd edition), McGraw Hill Publications, New York.
- 13. Kirby W. Beard (2019), Linden's Handbook of Batteries (5th edition), McGraw Hill.
- 14. Takatoshi Tsujimura (2012), OLED Display Fundamentals and Applications (2nd edition), Wiley–Blackwell
- 15. Dr. Panda H. (2017), "Handbook on Electroplating with Manufacture of Electrochemicals" (1st edition), Asia Pacific Business Press Inc.
- Expanding the Vision of Sensor Materials. National Research Council 1995, Washington, DC: The National Academies Press. doi: 10.17226/4782
- 17. Laboratory Manual, Department of Chemistry, BEC Bagalkot.
- Dr. Sudha Rani (1998), Laboratory Manual on Engineering Chemistry (1st edition), DhanapathRai Publishing Co. Ltd.

Web links and Video Lectures (e-Resources):

- <u>http://libgen.rs/</u>
- https://nptel.ac.in/downloads/122101001/
- <u>https://nptel.ac.in/courses/104/103/104103019/</u>
- <u>https://ndl.iitkgp.ac.in/</u>
- <u>https://www.youtube.com/watch?v=faESCxAWR9k</u>
- <u>https://www.youtube.com/watch?v=TBqXMWaxZYM&list=PLyhmwFtznRhuz8L1bb</u> <u>3X- 9IbHrDMjHWWh</u>

Course Outcomes:

- **CO1:** Analyse the properties of raw materials in designing energy systems for industrial and social applications.
- **CO2:** Assess properties of metallic and polymer materials for variety of engineering applications.
- **CO3:** Choose appropriate materials for desing of display systems.
- **CO4:** Identify and determine composition of various materials using sensors and develop e-waste management for electrical and electronic products.

Course Outcomes	Pro	Programme Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3	1					1					1	
CO2	3	2										1	
CO3	3	2										1	
CO4	3	1	1				1						

22UCH112C/212C	
L:T:P: 3:0:1	
Total Hours/week: 05	

Hrs

CHEMISTRY FOR MECHANICAL

ENGINEERING (ME) STREAM

Credits: 04 CIE Marks:50

SEE Marks:50

UNIT - I

10 Hrs

Analytical Techniques & Energy Sources

Analytical techniques: Introduction, principle, instrumentation of potentiometric sensors; its application in the estimation of iron, Optical sensors (colorimetry); its application in the estimation of the copper, pH-sensor (Glass electrode); its application in the determination of pH of beverages.

Fuels: Introduction, classification and characteristics of a good fuel, calorific value, Gross calorific value (GCV) and Net calorific value (NCV), determination of calorific value using bomb calorimeter, numerical problems on GCV and NCV.

Green fuels: Introduction, synthesis and applications of Bio gas, Bio ethanol and biodiesel.

High energy fuels: Production of hydrogen by electrolysis of water and its advantages and limitations.

Self Study: Types of electrodes - Reference electrode, Calomel electrode; Construction, working and applications.

UNIT – II

10 Hrs

Corrosion Science and Metal Finishing

Corrosion: Introduction, electrochemical theory of corrosion, types of electrochemical corrosion - differential metal, differential aeration (waterline and pitting), stress corrosion (caustic embrittlement). Factors affecting rate of corrosion. Corrosion testing by weight loss method. Corrosion penetration rate (CPR)-numerical problems.

Corrosion control: Introduction, Metal coating; Galvanization, surface conversion coating; Anodization and cathodic protection; Sacrificial anodic method.

Metal finishing: Introduction, technological importances. Electroplating: Process, Factors affecting quality of electrodeposit. Determination of throwing power by Haring-Blum cell. Numerical problems on throwing Power. Electroplating of chromium (hard and decorative). Electroless plating: Introduction, Comparision between electroplating and electroless plating, electroless plating of nickel.

Self Study: Use of corrosion inhibitors to control corrosion. Factors governing electroplating – Polarization, Decomposition potential and Over voltage.

Polymers: Introduction, Monomer, polymer, polymerization degree of polymerization, Glass transition temperature- factors affecting Tg. Molecular weight; number average and weight average, numerical problems. Synthesis, properties and industrial applications of Acrylo-Butadiene Styrene (ABS) plastics and silicon rubber.

UNIT - III

Fibers: Introduction, synthesis, properties and industrial applications of Kevlar and Polyester.

Plastics: Introduction, synthesis, properties and industrial applications of poly methyl methacrylate (PMMA) and Polyurethene (PU).

Composites: Introduction, properties and industrial applications of carbonbased reinforced composites (grapheme/carbon nano-tubes as fillers) and metal matrix polymer composites.

Lubricants: Introduction, classification, properties and applications of lubricants. **Self Study:** Biodegradable polymer: Introduction, synthesis, properties and applications of polylactic acid(PLA) and poly caprolactum (PCL).

UNIT - IV

Phase Rule and Materials for Engineering Applications

Phase rule: Introduction, Definition of terms: phase, components, degree of freedom, phase rule equation. Phase diagram: Two component lead-silver system.

Alloys: Introduction, classification, composition, properties and applications of Stainless Steel, Solders, Brass and Alnico.

Ceramics: Introduction, classification based on chemical composition, properties and applications of perovskites ($CaTiO_3$).

Nanomaterials: Introduction, size-dependent properties of nanomaterial (surface area, catalytical and thermal), synthesis of nanoparticles by sol-gel and co-precipitation method. Synthesis, Properties and engineering applications of carbon nanotubes and graphene.

Self Study: Phase diagram of one component system; Water system and classification of nano particles.

PRACTICAL CONTENT

List of Experiments

UNIT-I : Compulsorily conducting experiments

- 1. Estimation of total hardness of water by EDTA method
- 2. Potentiometric estimation of FAS using K2Cr₂O₇
- 3. Determination of pKa of vinegar using pH sensor (Glass electrode)
- 4. Estimation of Copper present in electroplating effluent by optical sensor (colorimetry)
- 5. Conductometric estimation of acid mixture
- 6. Estimation of iron in TMT bar by diphenyl amine/external indicator method
- 7. Determination of Alkalinity of given water sample by dual indicator method.
- 8. Determination of Viscosity coefficient of lubricant (Ostwald's viscometer)

UNIT-II: Virtual experiments (any one)

- 1. Electro-gravimetric estimation of metals
- 2. Preparation of urea formaldehyde resin
- 3. Synthesis of iron oxide nanoparticles
- 4. Electrolysis of water

UNIT-III: Open Ended Experiments (any one)

- 1. Measurements of IV characteristics of Photovoltaic Cell
- 2. Determination of percentage of copper in present the brass solution.
- 3. Determination of CaO in cement solution
- 4. Determination of manganese dioxide in pyrolusite ore

Reference books:

- 1. Wiley (2013), Engineering Chemistry (2nd edition), Wiley India Pvt. Ltd. New Delhi.
- 2. Satyaprakash & Manisha Agrawal (2012), Engineering Chemistry (1st edition), Khanna Book Publishing, Delhi.
- 3. Shashi Chawla (2003), A Text Book of Engineering Chemistry (3rd edition), Dhantpat Rai & Co. Pvt., Pub. Delhi.
- 4. Bahl.B.S., Arun Bahl &Tuli.G.D (2010), Essentials of Physical Chemistry (1st edition), S.Chand Publishing.

- 5. Sunita Rattan (2011), Applied Chemistry (3rd edition), S.K. Kataria & Sons.
- 6. Gourkrishna Dasmohapatra (2017), Engineering Chemistry (4th edition), Vikas Publishing
- 7. Dhara.S.S. & Umare.S.S (2010), Engineering Chemistry (12th edition), S. Chand & Company Ltd., Delhi.
- 8. Gadag R.V. and Nityananda Shetty (2016), A Text Book of Engineering Chemistry (2nd edition), I. K. International Publishing house.
- 9. Billmeyer.F.W. (1999), Text Book of Polymer Science (4th edition), John Wiley & Sons.
- 10. Ozin.G.A. & Arsenault.A.C. (2005), Nanotechnology A Chemical Approach to Nanomaterials (2nd edition), RSCPublishing.
- 11. Fontana.M.G., Greene.N.D. (1996), Corrosion Engineering (3rd edition), McGraw Hill Publications, New York.
- 12. Kirby W. Beard (2019), Linden's Handbook of Batteries (5th edition), McGraw Hill.
- 13. Takatoshi Tsujimura (2012), OLED Display Fundamentals and Applications (2nd edition), Wiley–Blackwell
- 14. Dr. Panda H. (2017), "Handbook on Electroplating with Manufacture of Electrochemicals" (1st edition), Asia Pacific BusinessPress Inc.
- 15. Expanding the Vision of Sensor Materials. National Research Council 1995, Washington, DC: TheNational Academies Press. doi: 10.17226/4782.
- 16. Laboratory Manual, Department of Chemistry, BEC Bagalkot
- 17. Dr. Sudha Rani (1998), Laboratory Manual on Engineering Chemistry (1st edition), DhanapathRai Publishing Co. Ltd.

Web links and Video Lectures (e-Resources):

- <u>http://libgen.rs/</u>
- https://nptel.ac.in/downloads/122101001/
- <u>https://nptel.ac.in/courses/104/103/104103019/</u>
- <u>https://ndl.iitkgp.ac.in/</u>
- <u>https://www.youtube.com/watch?v=faESCxAWR9k</u>
- <u>https://www.youtube.com/watch?v=TBqXMWaxZYM&list=PLyhmwFtznRhuz8L1b</u> <u>b3X-9IbHrDMjHWWh</u>

Course Outcomes:

CO1: Identify suitable sensor for the estimation of elements and fuel for future generation.

CO2: Assess and describe the forms, mechanisms, control of corrosion and surface modifications.

CO3: Choose appropriate smart materials for design of display systems.

CO4: Identify and determine composition of various materials using sensors and synthesis of polymers for specific engineering applications

Course	Programme Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1					1					1
CO2	3	2										1
CO3	3	2										1
CO4	3	1					1					1

22UCH110C/210C L:T:P: 3:0:1

Total Hours/week: 05 Hrs

CHEMISTRY FOR CIVIL SCIENCES (CVS) STREAM

Credits:04

CIE Marks:50

SEE Marks:50

UNIT - I

10 Hrs

Chemistry of Water and Environment

Water technology: Introduction, water quality parameters, hardness of water, determination of total hardness by EDTA method, numerical problems. Determination of chlorides; Mohr's method. Softening of water by ion exchange method, desalination of water by electrodialysis, Reverse and Forward osmosis: Introduction, Process and applications.

Water pollution: Sources, water quality assessment, effect of oxygen demanding waste water, Sewage treatment; Primary, secondary and tertiary treatment. Determination of Biological Oxygen Demand (BOD), Chemical oxygen demand (COD) and Numerical problems.

Self Study: Determination of DO in water samples by Winkler's method. Impact of heavy metals on human health.

UNIT – II

Analytical Techniques and Corrosion Science

Analytical Techniques: Sensors, Introduction, basic principle of sensor, Types of sensors; Conductometric sensors, Electrochemical sensors, Thermometric sensors, and Optical sensors. Potentiometric sensors; Introduction, principle, working and application in the estimation of iron. Colorimetric sensors; Introduction, principle, working and application in the estimation of copper. Conductometric sensors; Introduction, principle, working and application in the estimation of sensors and its application in the determination of soil sample.

Corrosion: Introduction, electrochemical theory of corrosion, types of electrochemical corrosion; differential metal corrosion, differential aeration corrosion (waterline and pitting), stress corrosion (caustic embrittlement). Factors affecting rate of corrosion. Corrosion testing by weight loss method. Corrosion penetration rate (CPR)-numerical problems.

Corrosion control: Introduction, Metal coating; galvanization, Surface conversion coating; anodization and cathodic protection; sacrificial anodic method.

Self Study: Use of Corrosion inhibitors to control corrosion. Corrosion control by organic coatings.

10 Hrs

Structural Materials

Metals and Alloys: Introduction, Properties and application of Iron and its alloys, Aluminium and itsalloys.

Cement: Introduction, composition, properties, classification, manufacturing process of cement, process of setting and hardening of cement, additives for cement and testing of cement.

Refractories: Introduction, classification based on chemical composition, properties and application of refractory materials.

Glass: Introduction, Composition, Types, Preparation of Soda-lime glass, properties and applications of glass.

Nano materials: Introduction, size dependent properties of nanomaterial (surface area and catalytic), Synthesis of nanomaterial by sol-gel method and co-precipitation method. Synthesis, properties and engineering applications of carbon nanotubes and graphene. Nanomaterials for water treatment, Introduction and example.

Self Study: Chemistry of reinforced concrete from various sources of water (seawater, groundwater, treated water).

UNIT - IV

10 Hrs

Polymers and Composites

Polymer: Introduction, monomer, polymer, polymerization, degree of polymerization. Molecular weight of polymers, Weight average and number average molecular weight of polymer. Numerical problems. Synthesis, properties and engineering applications of Acrylo Butadiene Styrene (ABS) plastics and Silicon rubber.

Fibers: Introduction, Synthesis, properties & applications of Rayon & Nylon fibers.

Polymer composites: Introduction, properties and applications of fiber reinforced polymers composites (FRPC).

Geo polymer concrete: Introduction, synthesis, constituents, properties & applications.

Adhesives: Introduction, properties and applications of epoxy resin

Biodegradable polymers: Introduction, Synthesis, properties and applications of polylactic acid (PLA)and poly hydroxy butyrate (PHB).

Self Study: Introduction, structural properties and applications of cellulose and lignin.

PRACTICAL CONTENT

List of Experiments

UNIT-I : Compulsorily conducting experiments

- 1. Estimation of total hardness of water by EDTA method
- 2. Potentiometric estimation of FAS using K2Cr₂O₇
- 3. Determination of pKa of vinegar using pH sensor (Glass electrode)
- 4. Estimation of Copper present in electroplating effluent by optical sensor (colorimetry)
- 5. Conductometric estimation of acid mixture
- 6. Estimation of iron in TMT bar by diphenyl amine/external indicator method
- 7. Determination of Alkalinity of given water sample by dual indicator method.

8. Determination of Viscosity coefficient of lubricant (Ostwald's viscometer) **UNIT-II: Virtual experiments (any one)**

- 1. Electro-gravimetric estimation of metals
- 2. Preparation of urea formaldehyde resin
- 3. Synthesis of iron oxide nanoparticles
- 4. Electrolysis of water

UNIT-III: Open Ended Experiments (any one)

- 1. Measurements of IV characteristics of Photovoltaic Cell
- 2. Determination of percentage of copper in present the brass solution.
- 3. Determination of CaO in cement solution
- 4. Determination of manganese dioxide in pyrolusite ore

Reference books:

- 1. Wiley (2013), Engineering Chemistry (2nd edition), Wiley India Pvt. Ltd. New Delhi.
- 2. Satyaprakash & Manisha Agrawal (2012), Engineering Chemistry (1st edition), Khanna Book Publishing, Delhi.
- 3. Shashi Chawla (2003), A Text Book of Engineering Chemistry (3rd edition), Dhantpat Rai & Co. Pvt., Pub. Delhi.
- 4. Bahl.B.S., Arun Bahl &Tuli.G.D (2010), Essentials of Physical Chemistry (1st edition), S.Chand Publishing.
- 5. Sunita Rattan (2011), Applied Chemistry (3rd edition), S.K. Kataria & Sons.

- 6. Dr. Chinnappan Baskar, Dr.Shikha Baskar & Dr.Ranjit S.Dhillon (2012), Engineering Chemistry (1st edition), Wiley India Pvt. Ltd.
- Gourkrishna Dasmohapatra (2017), Engineering Chemistry (4th edition), Vikas Publishing
- Dhara.S.S. & Umare.S.S (2010), Engineering Chemistry (12th edition), S. Chand & Company Ltd., Delhi.
- 9. Gadag R.V. and Nityananda Shetty (2016), A Text Book of Engineering Chemistry (2nd edition), I. K. International Publishing house.
- Billmeyer.F.W. (1999), Text Book of Polymer Science (4th edition), John Wiley & Sons.
- 11. Ozin.G.A. & Arsenault.A.C. (2005), Nanotechnology A Chemical Approach to Nanomaterials (2nd edition), RSCPublishing.
- 12. Fontana.M.G., Greene.N.D. (1996), Corrosion Engineering (3rd edition), McGraw Hill Publications, New York.
- 13. Kirby W. Beard (2019), Linden's Handbook of Batteries (5th edition), McGraw Hill.
- 14. Takatoshi Tsujimura (2012), OLED Display Fundamentals and Applications (2nd edition), Wiley–Blackwell
- 15. Dr. Panda H. (2017), "Handbook on Electroplating with Manufacture of Electrochemicals" (1st edition), Asia Pacific Business Press Inc.
- Expanding the Vision of Sensor Materials. National Research Council 1995, Washington, DC: The National Academies Press. doi: 10.17226/4782.
- 17. Laboratory Manual, Department of Chemistry, BEC Bagalkot.
- Dr. Sudha Rani (1998), Laboratory Manual on Engineering Chemistry (1st edition), DhanapathRai Publishing Co. Ltd

Web links and Video Lectures (e-Resources):

- <u>http://libgen.rs/</u>
- https://nptel.ac.in/downloads/122101001/
- https://nptel.ac.in/courses/104/103/104103019/
- <u>https://ndl.iitkgp.ac.in/</u>
- <u>https://www.youtube.com/watch?v=faESCxAWR9k</u>
- <u>https://www.youtube.com/watch?v=TBqXMWaxZYM&list=PLyhmwFtznRhuz8L1b</u> <u>b3X- 9IbHrDMjHWWh</u>

Course Outcomes:

CO1: Able to evaluate quality of water and its treatment methods for domestic and industrial

applications..

- **CO2:** Identify and evaluate composition of materials and mechanism involved in corrosion with controlling measures.
- **CO3:** Outline the application of structural materials for engineering application.
- **CO4:** Outline the various polymers and their properties with application in various engineering field.

Course	Programme Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1					1					1
CO2	3	2										1
CO3	3	2										1
CO4	3	1					1					1

CHEMISTRY FOR ELECTRICAL SCIENCES (ES) STREAM

Credits : 04 CIE Marks:50

SEE Marks:50

UNIT - I

10 Hrs

Energy Systems

Electrode System: Introduction, types of electrodes. Reference electrode; Introduction, calomel electrode – construction, working and applications of calomel electrode. Ion selective electrode; definition, construction, working and applications of glass electrode. Determination of pH using glass electrode. Concentration cell; Definition, construction and working. Numerical problems.

Batteries: Introduction, Components and classification of batteries. Construction, working and applications of modern batteries; Na-ion battery, solid state battery (Li-polymer battery) and flow battery (Vanadium redox flow battery).

Fuel Cells: Introduction, construction, working and applications of methanol– oxygen and polymer electrolyte membrane (PEM) fuel cell.

Solar Cell: Introduction, Semiconductors as solar cell materials. Arrangement of atoms in space, arrangement of electrons in atoms. Formation of bonds. Charge carriers and their motion in semiconductors. Construction and working of Solar Photo voltaic cell, advantages and disadvantages.

Self study: Characteristics of batteries. A note on Quantum dot sensitized solar cells (QDSSC) and applications.

UNIT – II

10 Hrs

Corrosion Science and E-waste management

Corrosion: Introduction, electrochemical theory of corrosion, types of corrosion-differential metal corrosion and differential aeration corrosion (Water line and pitting). Factors affecting rate of corrosion. Corrosion Penetration Rate (CPR); Introduction and numerical problems.

Corrosion control: Introduction, Metal coating; galvanization, Surface conversion coating; anodization and cathodic protection; sacrificial anodic method.

Electroless Plating: Introduction, Electroless plating of copper in the manufacture of double-sided printed circuit board (PCB).

E-waste Management: Introduction, sources, types, effects of e-waste on environment and human health, methods of disposal, advantages of recycling.

Extraction of copper and gold from e-waste.

Self study: Recycling of printed circuit board (PCB) and battery components. Electroplating of Copper.

UNIT - III

10 Hrs

Nano materials and display systems

Nanomaterials: Introduction, size dependent properties of nanomaterials (Surface area, Catalytic, Conducting), preparation of nanomaterials by sol-gel and co-precipitation method with example.

Display Systems

Liquid crystals (LC's); Introduction, classification, positional and orientational order, director, requirement of a substance to exhibit liquid crystal state. Chemical constitution and liquid crystalline behavior, molecular ordering in liquid crystal phase, liquid crystal behavior in homologous series; PAA and MBBA homologous series, electro-optic effect in liquid crystals, construction of liquid crystal display and applications of Liquid Crystal in Displays (LCD's).

Light Emitting Diode (LED): Introduction, working principle of LED. Application of LED.

Organic Light Emitting Diode (OLED): Introduction, Anatomy of OLED, Types of OLED. Comparison between LED and OLED. Advantages and Disadvantages of OLED, Applications of OLED. Quantum Light Emitting Diodes (QLED's); Properties and applications.

Self Study: Light emitting electrochemical cells.

UNIT - IV

10 Hrs

Analytical technique and Polymers

Analytical Techniques: Sensors, Introduction, basic principle of sensor, Types of sensors; Conductometric sensors, Electrochemical sensors, Thermometric sensors, and Optical sensors. Potentiometric sensors; Introduction, principle, working and application in the estimation of iron. Colorimetric sensors; Introduction, principle, working and application in the estimation of copper. Conductometric sensors; Introduction, principle, working and application in the estimation of weak acid.

Polymers: Introduction, Monomer, polymer, polymerization, degree of polymerization. Glass transition temperature, factors affecting glass transition temperature, Molecular weight; Number average and Weight average molecular weight. Numerical problems. Conducting polymers; synthesis and conducting mechanism of polyacetylene (n & p type). Preparation, properties and commercial applications of silicon rubber.

Self Study: Methods of polymerization. Polymer composites.

PRACTICAL CONTENT

List of Experiments

UNIT-I : Compulsorily conducting experiments

- 1. Estimation of total hardness of water by EDTA method
- 2. Potentiometric estimation of FAS using K2Cr₂O₇
- 3. Determination of pKa of vinegar using pH sensor (Glass electrode)
- 4. Estimation of Copper present in electroplating effluent by optical sensor (colorimetry)
- 5. Conductometric estimation of acid mixture
- 6. Estimation of iron in TMT bar by diphenyl amine/external indicator method
- 7. Determination of Alkalinity of given water sample by dual indicator method.
- 8. Determination of Viscosity coefficient of lubricant (Ostwald's viscometer)

UNIT-II: Virtual experiments (any one)

- 1. Electro-gravimetric estimation of metals
- 2. Preparation of urea formaldehyde resin
- 3. Synthesis of iron oxide nanoparticles
- 4. Electrolysis of water

UNIT-III: Open Ended Experiments (any one)

- 1. Measurements of IV characteristics of Photovoltaic Cell
- 2. Determination of percentage of copper in present the brass solution.
- 3. Determination of CaO in cement solution
- 4. Determination of manganese dioxide in pyrolusite ore

Reference books:

- 1. Wiley (2013), Engineering Chemistry (2nd edition), Wiley India Pvt. Ltd. New Delhi.
- 2. Satyaprakash & Manisha Agrawal (2012), Engineering Chemistry (1st edition), Khanna Book Publishing, Delhi.
- Shashi Chawla (2003), A Text Book of Engineering Chemistry (3rd edition), Dhantpat Rai & Co. Pvt., Pub. Delhi.

- 4. Bahl.B.S., Arun Bahl &Tuli.G.D (2010), Essentials of Physical Chemistry (1st edition), S.Chand Publishing.
- 5. Sunita Rattan (2011), Applied Chemistry (3rd edition), S.K. Kataria & Sons.
- 6. Dr. Chinnappan Baskar, Dr.Shikha Baskar & Dr.Ranjit S.Dhillon (2012), Engineering Chemistry (1st edition), Wiley India Pvt. Ltd.
- Gourkrishna Dasmohapatra (2017), Engineering Chemistry (4th edition), Vikas Publishing
- Dhara.S.S. & Umare.S.S (2010), Engineering Chemistry (12th edition), S. Chand & Company Ltd., Delhi.
- 9. Gadag R.V. and Nityananda Shetty (2016), A Text Book of Engineering Chemistry (2nd edition), I. K. International Publishing house.
- Billmeyer.F.W. (1999), Text Book of Polymer Science (4th edition), John Wiley & Sons.
- 11. Ozin.G.A. & Arsenault.A.C. (2005), Nanotechnology A Chemical Approach to Nanomaterials (2nd edition), RSCPublishing.
- 12. Fontana.M.G., Greene.N.D. (1996), Corrosion Engineering (3rd edition), McGraw Hill Publications, New York.
- 13. Kirby W. Beard (2019), Linden's Handbook of Batteries (5th edition), McGraw Hill.
- 14. Takatoshi Tsujimura (2012), OLED Display Fundamentals and Applications (2nd edition), Wiley–Blackwell.
- Dr. Panda H. (2017), "Handbook on Electroplating with Manufacture of Electrochemicals" (1st edition), Asia Pacific BusinessPress Inc.
- Expanding the Vision of Sensor Materials. National Research Council 1995, Washington, DC: The National Academies Press. doi: 10.17226/4782.
- 17. Laboratory Manual, Department of Chemistry, BEC Bagalkot.
- Dr. Sudha Rani (1998), Laboratory Manual on Engineering Chemistry (1st edition), DhanapathRai Publishing Co. Ltd.

Web links and Video Lectures (e-Resources):

- <u>http://libgen.rs/</u>
- https://nptel.ac.in/downloads/122101001/
- <u>https://nptel.ac.in/courses/104/103/104103019/</u>
- https://ndl.iitkgp.ac.in/

- <u>https://www.youtube.com/watch?v=faESCxAWR9k</u>
- <u>https://www.youtube.com/watch?v=TBqXMWaxZYM&list=PLyhmwFtznRhuz8L1b</u>
 <u>b3X-9IbHrDMjHWWh</u>
- <u>https://www.youtube.com/watch?v=j5Hml6KN4TI</u>

Course Outcomes:

CO1: Analyse the properties of raw materials in designing energy system for industrial and social application.

CO2: Assess and evaluate the forms, mechanism, control of corrosion and develop e-waste management of electrical and electronic products.

CO3: Choose appropriate small material for design of display system.

CO4: Identify and determine composition of various material using sensors and synthesis of polymers for specific purpose.

Course	Programme Outcomes											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1					1					1
CO2	3	2										1
CO3	3	2										1
CO4	3	1					1					1

SUBJECT CODE:		Credits: 03
21UCH110C/UCH210C		
L:T:P - 3 : 0 : 0	ENGINEERING CHEMISTRY	CIE Marks: 50
Total Hours/Week: 3		SEE Marks: 50

Total Hours/Week: 3

UNIT-I

10 Hrs.

Water Technology:

Introduction, sources, impurities and specifications of water, Hardness of water, Basic terms, Determination of total hardness of water by EDTA method, Numerical problems. Boiler feed water - boiler problems, Scale and sludge formation, priming and foaming, boiler corrosion (due to dissolved O_2 , CO_2 and $MgCl_2$).

Chemical analysis of water: Standard for portable water, Determination of; Dissolved oxygen, Chlorides. Water softening - Desalination of sea water by reverse osmosis.

Self Study: Softening of water by ion exchange process.

Electro Chemical Technology :

Introduction, Origin of electrode potential, Nernst equation, concentration cell, numerical problems on concentration cell, Reference electrode – Calomel electrode. Determination of single electrode potential using calomel electrode, Ion Selective Electrode – Glass electrode, Determination of pH of solution using glass electrode.

Energy storage devices: Introduction, Basic concept, Classification, Characteristics of batteries.

Construction and working of; 1) Nickel Metal hydride battery 2) Li-Cobalt oxide battery **Self Study:** Different types of Reference electrodes and their working principle.

UNIT-II

10 Hrs.

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

Corrosion Science:

Introduction, Corrosion – Definition, Types of corrosion, Chemical (Dry) and Electrochemical (Wet) corrosion. Theory of electrochemical corrosion by taking Iron as an example. Types of Electrochemical corrosion - Differential metal corrosion, Differential aeration corrosion. e.g. water line corrosion, Pitting corrosion. Stress corrosion e.g. Caustic embrittlement. Factors affecting the rate of corrosion; Related to metal & Related to environment. Numerical problems on Corrosion Penetration Rate (CPR) & Weight loss method.

Corrosion Control: Protective coatings: Inorganic coatings, Anodizing – meaning, Anodizing of Al and applications. Cathodic protection - i) Sacrificial anodic method ii) Impressed current method.

Self study: Metallic coating methods.

Metal Finishing :

Introduction, Technological importance of metal finishing. Factors governing

electroplating - Polarization, Decomposition potential and Over voltage. *Electroplating process*: Theory of electroplating - Definition, Principle components of an electroplating bath. Effects of plating variables on the nature of electro deposit. Determination of throwing power of plating bath by Harring - Blum cell and Numerical problems. Surface preparation for electroplating. Electroplating of Chromium (Decorative & Hard) and its applications.

Electroless plating process: Meaning, Distinction between electroplating and electroless plating. Surface preparation, Electroless plating of Copper on PCB and its applications. *Self study: Electroplating of Gold and Electroless plating of Ni on Al*

UNIT–III	10 Hrs.

Green Chemistry:

Introduction, definition, Major environmental pollutants, Basic principles of green chemistry (12 principles). Various green chemical approaches – Microwave synthesis, Bio catalysed reactions, Phase transfer catalysis. Super critical conditions for solvent free reactions. Synthesis of typical organic compounds by conventional and green route;

i) Adipic acid ii) Paracetamol

Atom economy – Atom economy calculations on synthesis of Ethylene oxide & Methyl Methacrylate. Numerical problems on Atom economy calculations. Industrial applications of green chemistry.

Self study: Information on recent green technology in industry.

Fuel Technology:

Non Renewable Energy Sources

Chemical Fuels: Introduction, Definition, classification, characteristics of fuel, Combustion, Calorific value - Definition, HCV, LCV, Determination of CV solid/liquid fuel by Bomb calorimeter, numerical problems.

Renewable Energy Sources

Biofuel - Introduction, Classification of biofuel. Biomass, Sources of biomass. Biodieselproduction of biodiesel by alkali catalyzed trans - esterification methods. Advantages and disadvantages of biodiesel.

Solar Energy – Photo Voltaic Cell; Introduction, Construction and Working of Typical P.V.Cell, Preparation of solar grade silicon by union carbide process, Advantages & Disadvantages of P.V.Cell.

Self study: Fuel cell technology eg: $CH_3OH - O_2$ fuel cell.

10 Hrs.

UNIT-IV

Polymer materials:

Introduction, definitions, classification, types of polymerization. Ionic polymerization; Mechanism of polymerization – Cationic and Anionic polymerizations of styrene. Molecular weight of polymers- Number average and weight average methods, numerical

Principal, Basaveshwar Engineering College, BAGALKOT-587 102.

problems. Glass transition temperature and factors affecting Tg & its significance. Synthesis, properties and applications of; i) Epoxy resin ii) Silicon rubber iii) PLA iv) PET. **Conducting polymers :** Introduction – Definition, Mechanism of conduction in poly acetylene and its applications.

Self study: Polymer composites.

Dyes: Introduction, definition, sensation of colour, classification based on chromophores. Theories of dyes- Witt theory & Electronic theory. Synthesis and applications of; i) Phenolphthalein ii) Methyl orange iii) Malachite green. Applications of Phenolphthalein & Methyl orange in chemical analysis.

Self study: *Information on food dyes with example and applications*

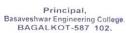
Reference Books

Text Books:

- 1. Dr. Suba Ramesh etal (2011), Engineering Chemistry (1st edition), Wiley India Pvt. Ltd., Delhi.
- 2. Shashi Chawla (2003), A Text Book of Engineering Chemistry (3rd edition), Dhantpat Rai & Co. Pvt., Pub. Delhi.

Reference Books:

- 1. Dr. Dhara.S.S. & Dr. Omare.S.S (2010), Engineering Chemistry (12th edition), S. Chand & Company Ltd., Delhi.
- 2. Jain & Jain (2013), Engineering Chemistry (16th edition), Dhanapath Rai pub. Co.
- 3. Dr. Timmanagoudar P. L. & Dr. Patil S. K. (2014), A Text Book of Engineering Chemistry (1st edition), EBPB, Gadag.
- 3. Kenneth Doxsee & James Huchison (2004), Green Organic Chemistry (1st edition), Thomson-Brooks/Cole.
- 4. David M. Mousdale (2017), Introduction to Bio fuels (3rd edition), CRC Press.


Course Outcomes

After completion of the course student will be able to

- 1. apply and demonstrate quantitative chemical analysis and electrochemical analysis techniques & incorporate new methods to produce soft water for industrial & domestic use at cheaper cost.
- 2. analyze engineering problems related to corrosion and develop/practice suitable preventive measures. Utilize surface modification methods to improve various cost effective properties of materials.
- **3.** apply the principles of green chemistry in design and development of alternative ecofriendly chemical synthesis methods to minimize hazardous substances and impart the knowledge of conventional and non-conventional energy sources and their effective

management.

4. acquire the knowledge of different polymer materials and dyes for wide variety of engineering applications.

Course Outcomes	Programme Outcomes (POs)												Program Specific Outcomes (PSOs)			
	1	1 2 3 4 5 6 7 8 9 10 11 12											1	2	3	
CO1	3	3		1		1						1	1			
CO2	3	3		1		1						1	1	2	1	
CO3	3	2				1						2	1	1	2	
CO4	3	1											1	1	1	

L:T:P - 0 - 0 - 2

21UCH114L/UCH214L

ENGINEERING CHEMISTRY LABORATORY

CIE Marks: 50 SEE Marks: 50

Total Hours/Week: 02

SI. No.

Name of the experiment

PART – A

- 1. Potentiometric estimation of Iron in the given solution using standard $K_2Cr_2O_7$ solution.
- 2. Determination of pKa of a weak acid by standard NaOH using pH meter.
- 3. Conductometric estimation of HCl & CH₃COOH in acid mixture by Standard NaOH.
- 4. Colorimetric estimation of copper in the given solution.

PART – B

- 1. Preparation standard solution and Standardization of a given solution.
- 2. Determination of total hardness of a given water sample by EDTA method.
- 3. Determination of alkalinity of water sample by duel indicator method.
- 4. Determination of amount of Fe in a given solution using standard $K_2Cr_2O_7$ solution.

Virtual lab

- 1. Gravimetric estimation of metals.
- 2. Determination of viscosity of liquid by Ostwald's Viscometer.

Reference Books

Text Books: Reference Books:

- 1. Sudharani (2012), Laboratory manual in Engineering Chemistry (3rd edition), Dhanapat Rai Publishing Company Private Limited, New Delhi.
- 2. Jeffery.G.H., Basett.J., Mendham.J & Denney R.C.(1989), Vogel's Test Book of quantitative Chemical Analysis (5th edition), John Wiley & Sons. Inc., New York.
- Sunita Rattan (2009), Practical Engineering Chemistry (2nd edition). Publisher S.K.Kataria & Sons.

Course Outcomes

After completion of the course student will be able to

- 1. Write systematic procedure for setting up & conduct of experiment.
- 2. Perform experiment on volumetric analysis individually along with interpretation of / results of analysis and calculation.
- 3. Perform experiments using instruments for trace of chemical analysis with high accuracy.
- 4. Incorporate the practical knowledge of chemistry for engineering applications.

Course Outcomes	Programme Outcomes (POs)													Program Specific Outcomes (PSOs)			
	1	1 2 3 4 5 6 7 8 9 10 11 12										1	2	3			
CO1	2	1	1	1		2						1	3	1	1		
CO2	2	1	1	2	2	2		1	1			1	3	1	1		
CO3	2	2		2	2	2	2	1	1			1	3	1	1		
CO4	2	1		2	2	2			1			1	3	1	1		

Principal, Basaveshwar Engineering College. BAGALKOT-587 102.

SUBJECT CODE: UCH168C/UCH268C	ENGINEERING CHEMISTRY	Credits: 04
L:T:P - 3 : 2 : 0	ENGINEERING CHEWISTRI	CIE Marks: 50
Total Hours/Week: 05		SEE Marks: 50

Water Technology:

Introduction, sources, impurities and specifications of water, Boiler feed water - boiler problems, Scale and sludge formation, priming and foaming, boiler corrosion (due to dissolved O₂, CO₂ and MgCl₂).

UNIT-I

Chemical analysis of water: Standard for portable water, Determination of; Dissolved oxygen, Chlorides, Sulphates, TDS and numerical problems.

Water softening: Softening of water by ion exchange process. Desalination of sea water by reverse osmosis.

Self Study: BOD and its determination.

Electro Chemical Technology

Introduction, Origin of electrode potential, Nernst equation, concentration cell, numerical on Concentration cell, Reference electrode – Calomel electrode. Determination of single electrode potential using calomel electrode, Ion selective Selective Electrode – Glass electrode, Determination of pH of solution using glass electrode.

Energy storage devices: Introduction, Basic concept, Classification, Characteristics of batteries.

Construction and working of;

- 1) Nickel Metal hydride battery
- 2) Lithium ion batteries;

i) Li-Air battery ii) Li-Cobalt oxide battery iii) Li-Sulphur battery

Self Study: Electrochemical Sensors & applications.

UNIT–II

18Hrs.

16Hrs.

Principal, Basaveshwar Engineering College BAGALKOT-587 102.

Corrosion Science:

Introduction, Corrosion – Definition, Types of corrosion, Chemical (Dry) and Electrochemical (Wet) corrosion. Theory of electrochemical corrosion by taking Iron as an example. Types of Electrochemical corrosion - Differential metal corrosion, Differential aeration corrosion. e.g. water line corrosion, Pitting corrosion. Stress corrosion e.g. Caustic embrittlement. Factors affecting the rate of corrosion; Related to metal & Related to environment. Numerical problems on Corrosion Penetration Rate (CPR) & Weight loss method.

Corrosion Control: Protective coatings: Inorganic coatings – (i) Anodizing – meaning, Anodizing of Al and applications (ii) Phosphating – process and applications. Cathodic protection - i) Sacrificial anodic method ii) Impressed current method.

Self study: Corrosion control by Metallic coating methods.

Metal Finishing : Introduction, Technological importance of metal finishing. Factors governing electroplating - Polarization, Decomposition potential and Over voltage.

Electroplating process: Theory of electroplating - Definition, Principle components of an electroplating bath. Effects of plating variables on the nature of electro deposit.

Determination of throwing power of plating bath by Harring-Blum cell and Numerical problems. Surface preparation for electroplating. Electroplating of Chromium and applications.

Electroless plating process: Meaning, Distinction between electroplating and electroless plating. Surface preparation, Electroless plating of Copper on PCB and applications. *Self study:* Information on Multifunctional Coating.

UNIT–III

16Hrs.

Green Chemistry:

Introduction, definition, Major environmental pollutants, Basic principles of green chemistry (12 principles). Various green chemical approaches – Microwave synthesis, Bio catalysed reactions, Phase transfer catalysis. Super critical conditions for solvent free reactions. Synthesis of typical organic compounds by conventional and green route; i) Adipic acid ii) Paracetamol

Atom economy – Synthesis of Ethylene oxide & Mehtyl Methacrylate. Industrial applications of green chemistry, Numerical problems on Atom economy.

Self study: Information on recent green technology, green chemical products and application

Fuel Technology :

Non Renewable Energy Sources: Introduction, Definition, classification, characteristics of fuel, Combustion, Calorific value- Definition, HCV, LCV, Determination of CV solid/liquid fuel by Bomb calorimeter, numerical problems.

Renewable Energy Sources:

Biofuel - Introduction, Classification of biofuels. Biomass, Sources of biomass. Biodieselproduction of biodiesel by trans-esterification, mechanism of acid catalyzed reaction and alkali catalyzed reactions. Advantages and disadvantages of biodiesel. Fuel cell technology eg: $CH_3OH - O_2$ fuel cell.

Solar Energy – P.V.Cell; Introduction , Construction and Working of Typical P.V.Cell, Preparation of solar grade silicon by union carbide process, Advantages & Disadvantages of P.V.Cell.

Self study: Information on Wind Energy.

Polymer materials:

Introduction, definitions, classification, polymerization types. Mechanism of polymerization- Cationic/Anionic polymerizations of styrene. Molecular weight of polymers- Number average and weight average methods, numerical problems. Glass transition temperature and factors affecting. Synthesis, properties and applications of; i) Epoxy resin ii) Silicon rubber iii) PLA iv) PET.

Conducting polymers – Definition, Mechanism of conduction in polyacetylene and applications, Graphene – introduction, Mechanism of conduction in graphene and applications.

Self study: Polymer membranes and their applications

Dyes: Introduction, definition, sensation of colour, classification based on applications of dyes. Theories of dyes- Wit theory, Electronic theory, Relationship of absorbed and visible colours. Synthesis, Properties and applications of; i) Azo dyes

Fluorescent dyes – Introduction, Classification, flurophores and their bio-Applications.

Self study: Information on food dyes with example and applications

Reference Books

Text Books:

- 1. Dr. Suba Ramesh etal (2011), Engineering Chemistry (1st edition), Wiley India Pvt. Ltd., Delhi.
- 2. Shashi Chawla (2003), A Text Book of Engineering Chemistry (3rd edition), Dhantpat Rai & Co. Pvt., Pub. Delhi.

Reference Books:

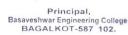
- 1. Dr. Dhara.S.S. & Dr. Omare.S.S (2010), Engineering Chemistry (12th edition), S. Chand & Company Ltd., Delhi.
- 2. Jain & Jain (2013), Engineering Chemistry (16th edition), Dhanapath Rai pub. Co.
- 3. Kenneth Doxsee & James Huchison (2004), Green Organic Chemistry (1st edition), Thomson-Brooks/Cole.
- 4. David M. Mousdale (2017), Introduction to Bio fuels (3rd edition), CRC Press.

Course Outcomes**

After completion of the course student will be able to

- 1. Apply and demonstrate quantitative chemical analysis and electrochemical analysis techniques and incorporate new methods to produce soft water for industrial and domestic use at cheaper cost.
- 2. Analyze engineering problems related to corrosion and develop/practice suitable preventive measures. Utilize surface modification methods to improve various cost effective properties of

materials.


- 3. Apply the principles of green chemistry in design and development of alternative ecofriendly chemical synthesis methods to minimize hazardous substances and impart the knowledge of conventional and non-conventional energy sources and their effective management.
- 4. Acquire the knowledge of different polymer materials and dyes for wide variety of engineering applications.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be wri	tten with proper action word and should be assessable and	d quantifiable
Course Outcomes	Programme Outcomes (POs)	Program Sp

Course Outcomes				Pro	Program Specific Outcomes (PSOs)									
	1	1 2 3 4 5 6 7 8 9 10 11 12									1	2	3	
CO1	3	1									1			
CO2	3	2	1								1			
CO3	3	2	1				2				1			
CO4	3	1	1								1			

....

